equal
deleted
inserted
replaced
1587 and b: "finite (supp c)" |
1587 and b: "finite (supp c)" |
1588 obtains p::"perm" where "(p \<bullet> Xs)\<sharp>*c" and "(supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))" |
1588 obtains p::"perm" where "(p \<bullet> Xs)\<sharp>*c" and "(supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))" |
1589 using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \<union> supp c"] |
1589 using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \<union> supp c"] |
1590 unfolding fresh_star_def fresh_def by blast |
1590 unfolding fresh_star_def fresh_def by blast |
1591 |
1591 |
|
1592 lemma at_set_avoiding1: |
|
1593 assumes "finite xs" |
|
1594 and "finite (supp c)" |
|
1595 shows "\<exists>p. (p \<bullet> xs) \<sharp>* c" |
|
1596 using assms |
|
1597 apply(erule_tac c="c" in at_set_avoiding) |
|
1598 apply(auto) |
|
1599 done |
|
1600 |
1592 lemma at_set_avoiding2: |
1601 lemma at_set_avoiding2: |
1593 assumes "finite xs" |
1602 assumes "finite xs" |
1594 and "finite (supp c)" "finite (supp x)" |
1603 and "finite (supp c)" "finite (supp x)" |
1595 and "xs \<sharp>* x" |
1604 and "xs \<sharp>* x" |
1596 shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p" |
1605 shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p" |