Nominal/Ex/Classical_Test.thy
changeset 2905 9448945a1e60
equal deleted inserted replaced
2903:e26c6c728b9e 2905:9448945a1e60
       
     1 theory Classical
       
     2 imports "../Nominal2"
       
     3 begin
       
     4 
       
     5 lemma supp_zero_perm_zero:
       
     6   shows "supp (p :: perm) = {} \<longleftrightarrow> p = 0"
       
     7   by (metis supp_perm_singleton supp_zero_perm)
       
     8 
       
     9 lemma permute_atom_list_id:
       
    10   shows "p \<bullet> l = l \<longleftrightarrow> supp p \<inter> set l = {}"
       
    11   by (induct l) (auto simp add: supp_Nil supp_perm)
       
    12 
       
    13 lemma permute_length_eq:
       
    14   shows "p \<bullet> xs = ys \<Longrightarrow> length xs = length ys"
       
    15   by (auto simp add: length_eqvt[symmetric] permute_pure)
       
    16 
       
    17 lemma Abs_lst_binder_length:
       
    18   shows "[xs]lst. T = [ys]lst. S \<Longrightarrow> length xs = length ys"
       
    19   by (auto simp add: Abs_eq_iff alphas length_eqvt[symmetric] permute_pure)
       
    20 
       
    21 lemma Abs_lst_binder_eq:
       
    22   shows "Abs_lst l T = Abs_lst l S \<longleftrightarrow> T = S"
       
    23   by (rule, simp_all add: Abs_eq_iff2 alphas)
       
    24      (metis fresh_star_zero inf_absorb1 permute_atom_list_id supp_perm_eq
       
    25        supp_zero_perm_zero)
       
    26 
       
    27 lemma in_permute_list:
       
    28   shows "py \<bullet> p \<bullet> xs = px \<bullet> xs \<Longrightarrow>  x \<in> set xs \<Longrightarrow> py \<bullet> p \<bullet> x = px \<bullet> x"
       
    29   by (induct xs) auto
       
    30 
       
    31 lemma obtain_atom_list:
       
    32   assumes eq: "p \<bullet> xs = ys"
       
    33       and fin: "finite (supp c)"
       
    34       and sorts: "map sort_of xs = map sort_of ys"
       
    35   shows "\<exists>ds px py. (set ds \<sharp>* c) \<and> (px \<bullet> xs = ds) \<and> (py \<bullet> ys = ds)
       
    36     \<and> (supp px - set xs) \<sharp>* c \<and> (supp py - set ys) \<sharp>* c"
       
    37   sorry
       
    38 
       
    39 lemma Abs_lst_fcb2:
       
    40   fixes S T :: "'b :: fs"
       
    41     and c::"'c::fs"
       
    42   assumes e: "[xs]lst. T = [ys]lst. S"
       
    43   and sorts: "map sort_of xs = map sort_of ys"
       
    44   and fcb1: "\<And>x. x \<in> set xs \<Longrightarrow> x \<sharp> f xs T c"
       
    45   and fcb2: "\<And>x. x \<in> set ys \<Longrightarrow> x \<sharp> f ys S c"
       
    46   and fresh: "(set xs \<union> set ys) \<sharp>* c"
       
    47   and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f xs T c) = f (p \<bullet> xs) (p \<bullet> T) c"
       
    48   and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f ys S c) = f (p \<bullet> ys) (p \<bullet> S) c"
       
    49   shows "f xs T c = f ys S c"
       
    50 proof -
       
    51   have fin1: "finite (supp (f xs T c))"
       
    52     apply(rule_tac S="supp (xs, T, c)" in supports_finite)
       
    53     apply(simp add: supports_def)
       
    54     apply(simp add: fresh_def[symmetric])
       
    55     apply(clarify)
       
    56     apply(subst perm1)
       
    57     apply(simp add: supp_swap fresh_star_def)
       
    58     apply(simp add: swap_fresh_fresh fresh_Pair)
       
    59     apply(simp add: finite_supp)
       
    60     done
       
    61   have fin2: "finite (supp (f ys S c))"
       
    62     apply(rule_tac S="supp (ys, S, c)" in supports_finite)
       
    63     apply(simp add: supports_def)
       
    64     apply(simp add: fresh_def[symmetric])
       
    65     apply(clarify)
       
    66     apply(subst perm2)
       
    67     apply(simp add: supp_swap fresh_star_def)
       
    68     apply(simp add: swap_fresh_fresh fresh_Pair)
       
    69     apply(simp add: finite_supp)
       
    70     done
       
    71   obtain p :: perm where xs_ys: "p \<bullet> xs = ys" using e
       
    72     by (auto simp add: Abs_eq_iff alphas)
       
    73   obtain ds::"atom list" and px and py
       
    74     where fr: "set ds \<sharp>* (xs, ys, S, T, c, f xs T c, f ys S c)"
       
    75     and pxd: "px \<bullet> xs = ds"     and pyd: "py \<bullet> ys = ds"
       
    76     and spx: "(supp px - set xs) \<sharp>* (xs, ys, S, T, c, f xs T c, f ys S c)"
       
    77     and spy: "(supp py - set ys) \<sharp>* (xs, ys, S, T, c, f xs T c, f ys S c)"
       
    78     using obtain_atom_list[OF xs_ys, of "(xs, ys, S, T, c, f xs T c, f ys S c)"]
       
    79     sorts by (auto simp add: finite_supp supp_Pair fin1 fin2)
       
    80   have "px \<bullet> (Abs_lst xs T) = py \<bullet> (Abs_lst ys S)"
       
    81     apply (subst perm_supp_eq)
       
    82     using spx apply (auto simp add: fresh_star_def Abs_fresh_iff)[1]
       
    83     apply (subst perm_supp_eq)
       
    84     using spy apply (auto simp add: fresh_star_def Abs_fresh_iff)[1]
       
    85     by(rule e)
       
    86   then have "Abs_lst ds (px \<bullet> T) = Abs_lst ds (py \<bullet> S)" by (simp add: pxd pyd)
       
    87   then have eq: "px \<bullet> T = py \<bullet> S" by (simp add: Abs_lst_binder_eq)
       
    88   have "f xs T c = px \<bullet> f xs T c"
       
    89     apply(rule perm_supp_eq[symmetric])
       
    90     using spx unfolding fresh_star_def
       
    91     apply (intro ballI)
       
    92     by (case_tac "a \<in> set xs") (simp_all add: fcb1)
       
    93   also have "... = f (px \<bullet> xs) (px \<bullet> T) c"
       
    94     apply(rule perm1)
       
    95     using spx fresh unfolding fresh_star_def
       
    96     apply (intro ballI)
       
    97     by (case_tac "a \<in> set xs") (simp_all add: fcb1)
       
    98   also have "... = f (py \<bullet> ys) (py \<bullet> S) c" using eq pxd pyd by simp
       
    99   also have "... = py \<bullet> f ys S c"
       
   100     apply(rule perm2[symmetric])
       
   101     using spy fresh unfolding fresh_star_def
       
   102     apply (intro ballI)
       
   103     by (case_tac "a \<in> set ys") (simp_all add: fcb1)
       
   104   also have "... = f ys S c"
       
   105     apply(rule perm_supp_eq)
       
   106     using spy unfolding fresh_star_def
       
   107     apply (intro ballI)
       
   108     by (case_tac "a \<in> set ys") (simp_all add: fcb2)
       
   109   finally show ?thesis by simp
       
   110 qed
       
   111 
       
   112 end
       
   113 
       
   114 
       
   115