Nominal/Nominal2_Eqvt.thy
changeset 2668 92c001d93225
parent 2667 e3f8673085b1
child 2672 7e7662890477
equal deleted inserted replaced
2667:e3f8673085b1 2668:92c001d93225
   110   by (perm_simp add: permute_minus_cancel) (rule refl)
   110   by (perm_simp add: permute_minus_cancel) (rule refl)
   111 
   111 
   112 lemma ex_eqvt2:
   112 lemma ex_eqvt2:
   113   shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))"
   113   shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))"
   114   by (perm_simp add: permute_minus_cancel) (rule refl)
   114   by (perm_simp add: permute_minus_cancel) (rule refl)
   115 
       
   116 lemma ex1_eqvt[eqvt]:
       
   117   shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. (p \<bullet> P) x)"
       
   118   unfolding Ex1_def
       
   119   by (perm_simp) (rule refl)
       
   120 
   115 
   121 lemma ex1_eqvt2:
   116 lemma ex1_eqvt2:
   122   shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))"
   117   shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))"
   123   by (perm_simp add: permute_minus_cancel) (rule refl)
   118   by (perm_simp add: permute_minus_cancel) (rule refl)
   124 
   119