FSet.thy
changeset 506 91c374abde06
parent 498 e7bb6bbe7576
child 507 f7569f994195
child 508 fac6069d8e80
equal deleted inserted replaced
505:6cdba30c6d66 506:91c374abde06
   178   fixes z
   178   fixes z
   179   assumes a: "x \<approx> y"
   179   assumes a: "x \<approx> y"
   180   shows "(z memb x) = (z memb y)"
   180   shows "(z memb x) = (z memb y)"
   181   using a by induct auto
   181   using a by induct auto
   182 
   182 
   183 lemma ho_memb_rsp[quot_rsp]:
   183 lemma ho_memb_rsp[quotient_rsp]:
   184   "(op = ===> (op \<approx> ===> op =)) (op memb) (op memb)"
   184   "(op = ===> (op \<approx> ===> op =)) (op memb) (op memb)"
   185   by (simp add: memb_rsp)
   185   by (simp add: memb_rsp)
   186 
   186 
   187 lemma card1_rsp:
   187 lemma card1_rsp:
   188   fixes a b :: "'a list"
   188   fixes a b :: "'a list"
   189   assumes e: "a \<approx> b"
   189   assumes e: "a \<approx> b"
   190   shows "card1 a = card1 b"
   190   shows "card1 a = card1 b"
   191   using e by induct (simp_all add:memb_rsp)
   191   using e by induct (simp_all add:memb_rsp)
   192 
   192 
   193 lemma ho_card1_rsp[quot_rsp]: 
   193 lemma ho_card1_rsp[quotient_rsp]: 
   194   "(op \<approx> ===> op =) card1 card1"
   194   "(op \<approx> ===> op =) card1 card1"
   195   by (simp add: card1_rsp)
   195   by (simp add: card1_rsp)
   196 
   196 
   197 lemma cons_rsp[quot_rsp]:
   197 lemma cons_rsp[quotient_rsp]:
   198   fixes z
   198   fixes z
   199   assumes a: "xs \<approx> ys"
   199   assumes a: "xs \<approx> ys"
   200   shows "(z # xs) \<approx> (z # ys)"
   200   shows "(z # xs) \<approx> (z # ys)"
   201   using a by (rule list_eq.intros(5))
   201   using a by (rule list_eq.intros(5))
   202 
   202 
   203 lemma ho_cons_rsp[quot_rsp]:
   203 lemma ho_cons_rsp[quotient_rsp]:
   204   "(op = ===> op \<approx> ===> op \<approx>) op # op #"
   204   "(op = ===> op \<approx> ===> op \<approx>) op # op #"
   205   by (simp add: cons_rsp)
   205   by (simp add: cons_rsp)
   206 
   206 
   207 lemma append_rsp_fst:
   207 lemma append_rsp_fst:
   208   assumes a : "l1 \<approx> l2"
   208   assumes a : "l1 \<approx> l2"
   255   apply (rule append_rsp_fst)
   255   apply (rule append_rsp_fst)
   256   using b apply (assumption)
   256   using b apply (assumption)
   257   apply (rule append_sym_rsp)
   257   apply (rule append_sym_rsp)
   258   done
   258   done
   259 
   259 
   260 lemma ho_append_rsp[quot_rsp]:
   260 lemma ho_append_rsp[quotient_rsp]:
   261   "(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
   261   "(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
   262   by (simp add: append_rsp)
   262   by (simp add: append_rsp)
   263 
   263 
   264 lemma map_rsp:
   264 lemma map_rsp:
   265   assumes a: "a \<approx> b"
   265   assumes a: "a \<approx> b"
   267   using a
   267   using a
   268   apply (induct)
   268   apply (induct)
   269   apply(auto intro: list_eq.intros)
   269   apply(auto intro: list_eq.intros)
   270   done
   270   done
   271 
   271 
   272 lemma ho_map_rsp[quot_rsp]:
   272 lemma ho_map_rsp[quotient_rsp]:
   273   "(op = ===> op \<approx> ===> op \<approx>) map map"
   273   "(op = ===> op \<approx> ===> op \<approx>) map map"
   274   by (simp add: map_rsp)
   274   by (simp add: map_rsp)
   275 
   275 
   276 lemma map_append:
   276 lemma map_append:
   277   "(map f (a @ b)) \<approx> (map f a) @ (map f b)"
   277   "(map f (a @ b)) \<approx> (map f a) @ (map f b)"
   278  by simp (rule list_eq_refl)
   278  by simp (rule list_eq_refl)
   279 
   279 
   280 lemma ho_fold_rsp[quot_rsp]:
   280 lemma ho_fold_rsp[quotient_rsp]:
   281   "(op = ===> op = ===> op = ===> op \<approx> ===> op =) fold1 fold1"
   281   "(op = ===> op = ===> op = ===> op \<approx> ===> op =) fold1 fold1"
   282   apply (auto simp add: FUN_REL_EQ)
   282   apply (auto simp add: FUN_REL_EQ)
   283   apply (case_tac "rsp_fold x")
   283   apply (case_tac "rsp_fold x")
   284   prefer 2
   284   prefer 2
   285   apply (erule_tac list_eq.induct)
   285   apply (erule_tac list_eq.induct)
   295 ML {* val rsp_thms =
   295 ML {* val rsp_thms =
   296   @{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp ho_map_rsp ho_append_rsp ho_fold_rsp} *}
   296   @{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp ho_map_rsp ho_append_rsp ho_fold_rsp} *}
   297 
   297 
   298 ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
   298 ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
   299 ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "fset"; *}
   299 ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "fset"; *}
   300 ML {* fun lift_tac_fset lthy t = lift_tac lthy t [rel_eqv] [quot] *}
   300 ML {* fun lift_tac_fset lthy t = lift_tac lthy t [rel_eqv] *}
   301 
   301 
   302 lemma "IN x EMPTY = False"
   302 lemma "IN x EMPTY = False"
   303 apply(tactic {* procedure_tac @{context} @{thm m1} 1 *})
   303 apply(tactic {* procedure_tac @{context} @{thm m1} 1 *})
   304 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   304 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   305 apply(tactic {* all_inj_repabs_tac @{context} [quot] [rel_refl] [trans2] 1 *})
   305 apply(tactic {* all_inj_repabs_tac @{context} [rel_refl] [trans2] 1 *})
   306 apply(tactic {* clean_tac @{context} [quot] 1*})
   306 apply(tactic {* clean_tac @{context} 1*})
   307 done
   307 done
   308 
   308 
   309 lemma "IN x (INSERT y xa) = (x = y \<or> IN x xa)"
   309 lemma "IN x (INSERT y xa) = (x = y \<or> IN x xa)"
   310 by (tactic {* lift_tac_fset @{context} @{thm m2} 1 *})
   310 by (tactic {* lift_tac_fset @{context} @{thm m2} 1 *})
   311 
   311 
   328 lemma "FOLD f g (z::'b) (INSERT a x) =
   328 lemma "FOLD f g (z::'b) (INSERT a x) =
   329   (if rsp_fold f then if IN a x then FOLD f g z x else f (g a) (FOLD f g z x) else z)"
   329   (if rsp_fold f then if IN a x then FOLD f g z x else f (g a) (FOLD f g z x) else z)"
   330 apply(tactic {* lift_tac_fset @{context} @{thm fold1.simps(2)} 1 *})
   330 apply(tactic {* lift_tac_fset @{context} @{thm fold1.simps(2)} 1 *})
   331 done
   331 done
   332 
   332 
   333 ML {* fun inj_repabs_tac_fset lthy = inj_repabs_tac lthy [quot] [rel_refl] [trans2] *}
   333 ML {* fun inj_repabs_tac_fset lthy = inj_repabs_tac lthy [rel_refl] [trans2] *}
   334 
   334 
   335 lemma "fmap f (FUNION (x::'b fset) (xa::'b fset)) = FUNION (fmap f x) (fmap f xa)"
   335 lemma "fmap f (FUNION (x::'b fset) (xa::'b fset)) = FUNION (fmap f x) (fmap f xa)"
   336 apply (tactic {* lift_tac_fset @{context} @{thm map_append} 1 *})
   336 apply (tactic {* lift_tac_fset @{context} @{thm map_append} 1 *})
   337 done
   337 done
   338 
   338 
   346 lemma "\<lbrakk>P EMPTY; \<And>a x. P x \<Longrightarrow> P (INSERT a x)\<rbrakk> \<Longrightarrow> P l"
   346 lemma "\<lbrakk>P EMPTY; \<And>a x. P x \<Longrightarrow> P (INSERT a x)\<rbrakk> \<Longrightarrow> P l"
   347 apply (tactic {* (ObjectLogic.full_atomize_tac THEN' gen_frees_tac @{context}) 1 *})
   347 apply (tactic {* (ObjectLogic.full_atomize_tac THEN' gen_frees_tac @{context}) 1 *})
   348 apply(tactic {* procedure_tac @{context} @{thm list.induct} 1 *})
   348 apply(tactic {* procedure_tac @{context} @{thm list.induct} 1 *})
   349 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   349 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   350 prefer 2
   350 prefer 2
   351 apply(tactic {* clean_tac @{context} [quot] 1 *})
   351 apply(tactic {* clean_tac @{context} 1 *})
   352 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *)
   352 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *)
   353 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
   353 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
   354 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 2 *) (* lam-lam-elim for R = (===>) *)
   354 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 2 *) (* lam-lam-elim for R = (===>) *)
   355 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *)
   355 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *)
   356 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
   356 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
   402   apply (rule a)
   402   apply (rule a)
   403   apply (rule b)
   403   apply (rule b)
   404   apply (assumption)
   404   apply (assumption)
   405   done
   405   done
   406 
   406 
       
   407 ML {* quot *}
       
   408 thm quotient_thm
       
   409 
   407 lemma "P (x :: 'a list) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
   410 lemma "P (x :: 'a list) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
   408 apply (tactic {* lift_tac_fset @{context} @{thm list_induct_part} 1 *})
   411 apply (tactic {* lift_tac_fset @{context} @{thm list_induct_part} 1 *})
   409 done
   412 done
   410 
   413 
   411 lemma "P (x :: 'a fset) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
   414 lemma "P (x :: 'a fset) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
   451   fset_case::"'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
   454   fset_case::"'a \<Rightarrow> ('b \<Rightarrow> 'b fset \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a"
   452 where
   455 where
   453   "fset_case \<equiv> list_case"
   456   "fset_case \<equiv> list_case"
   454 
   457 
   455 (* Probably not true without additional assumptions about the function *)
   458 (* Probably not true without additional assumptions about the function *)
   456 lemma list_rec_rsp[quot_rsp]:
   459 lemma list_rec_rsp[quotient_rsp]:
   457   "(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_rec list_rec"
   460   "(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_rec list_rec"
   458   apply (auto simp add: FUN_REL_EQ)
   461   apply (auto simp add: FUN_REL_EQ)
   459   apply (erule_tac list_eq.induct)
   462   apply (erule_tac list_eq.induct)
   460   apply (simp_all)
   463   apply (simp_all)
   461   sorry
   464   sorry
   462 
   465 
   463 lemma list_case_rsp[quot_rsp]:
   466 lemma list_case_rsp[quotient_rsp]:
   464   "(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_case list_case"
   467   "(op = ===> (op = ===> op \<approx> ===> op =) ===> op \<approx> ===> op =) list_case list_case"
   465   apply (auto simp add: FUN_REL_EQ)
   468   apply (auto simp add: FUN_REL_EQ)
   466   sorry
   469   sorry
   467 
   470 
   468 ML {* val rsp_thms = @{thms list_rec_rsp list_case_rsp} @ rsp_thms *}
   471 ML {* val rsp_thms = @{thms list_rec_rsp list_case_rsp} @ rsp_thms *}