Quot/QuotScript.thy
changeset 700 91b079db7380
parent 697 57944c1ef728
child 721 19032e71fb1c
equal deleted inserted replaced
699:aa157e957655 700:91b079db7380
    28   by (metis equivp_reflp_symp_transp symp_def)
    28   by (metis equivp_reflp_symp_transp symp_def)
    29 
    29 
    30 lemma equivp_transp:
    30 lemma equivp_transp:
    31   shows "equivp E \<Longrightarrow> (\<And>x y z. E x y \<Longrightarrow> E y z \<Longrightarrow> E x z)"
    31   shows "equivp E \<Longrightarrow> (\<And>x y z. E x y \<Longrightarrow> E y z \<Longrightarrow> E x z)"
    32 by (metis equivp_reflp_symp_transp transp_def)
    32 by (metis equivp_reflp_symp_transp transp_def)
       
    33 
       
    34 lemma equivpI:
       
    35   assumes "reflp R" "symp R" "transp R"
       
    36   shows "equivp R"
       
    37 using assms by (simp add: equivp_reflp_symp_transp)
    33 
    38 
    34 definition
    39 definition
    35   "part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
    40   "part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
    36 
    41 
    37 lemma equivp_IMP_part_equivp:
    42 lemma equivp_IMP_part_equivp: