Nominal/Equivp.thy
changeset 2324 9038c9549073
parent 2300 9fb315392493
equal deleted inserted replaced
2323:99706604c573 2324:9038c9549073
     1 theory Equivp
     1 theory Equivp
     2 imports "Abs" "Perm" "Tacs" "Rsp"
     2 imports "Abs" "Perm" "Tacs" "Rsp"
     3 begin
     3 begin
     4 
       
     5 ML {*
       
     6 fun build_alpha_sym_trans_gl alphas (x, y, z) =
       
     7 let
       
     8   fun build_alpha alpha =
       
     9     let
       
    10       val ty = domain_type (fastype_of alpha);
       
    11       val var = Free(x, ty);
       
    12       val var2 = Free(y, ty);
       
    13       val var3 = Free(z, ty);
       
    14       val symp = HOLogic.mk_imp (alpha $ var $ var2, alpha $ var2 $ var);
       
    15       val transp = HOLogic.mk_imp (alpha $ var $ var2,
       
    16         HOLogic.mk_all (z, ty,
       
    17           HOLogic.mk_imp (alpha $ var2 $ var3, alpha $ var $ var3)))
       
    18     in
       
    19       (symp, transp)
       
    20     end;
       
    21   val eqs = map build_alpha alphas
       
    22   val (sym_eqs, trans_eqs) = split_list eqs
       
    23   fun conj l = @{term Trueprop} $ foldr1 HOLogic.mk_conj l
       
    24 in
       
    25   (conj sym_eqs, conj trans_eqs)
       
    26 end
       
    27 *}
       
    28 
       
    29 ML {*
       
    30 fun build_alpha_refl_gl fv_alphas_lst alphas =
       
    31 let
       
    32   val (fvs_alphas, _) = split_list fv_alphas_lst;
       
    33   val (_, alpha_ts) = split_list fvs_alphas;
       
    34   val tys = map (domain_type o fastype_of) alpha_ts;
       
    35   val names = Datatype_Prop.make_tnames tys;
       
    36   val args = map Free (names ~~ tys);
       
    37   fun find_alphas ty x =
       
    38     domain_type (fastype_of x) = ty;
       
    39   fun refl_eq_arg (ty, arg) =
       
    40     let
       
    41       val rel_alphas = filter (find_alphas ty) alphas;
       
    42     in
       
    43       map (fn x => x $ arg $ arg) rel_alphas
       
    44     end;
       
    45   (* Flattening loses the induction structure *)
       
    46   val eqs = map (foldr1 HOLogic.mk_conj) (map refl_eq_arg (tys ~~ args))
       
    47 in
       
    48   (names, HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj eqs))
       
    49 end
       
    50 *}
       
    51 
       
    52 ML {*
       
    53 fun reflp_tac induct eq_iff =
       
    54   rtac induct THEN_ALL_NEW
       
    55   simp_tac (HOL_basic_ss addsimps eq_iff) THEN_ALL_NEW
       
    56   split_conj_tac THEN_ALL_NEW REPEAT o rtac @{thm exI[of _ "0 :: perm"]}
       
    57   THEN_ALL_NEW split_conj_tac THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps
       
    58      @{thms alphas fresh_star_def fresh_zero_perm permute_zero ball_triv
       
    59        add_0_left supp_zero_perm Int_empty_left split_conv prod_rel.simps})
       
    60 *}
       
    61 
       
    62 ML {*
       
    63 fun build_alpha_refl fv_alphas_lst alphas induct eq_iff ctxt =
       
    64 let
       
    65   val (names, gl) = build_alpha_refl_gl fv_alphas_lst alphas;
       
    66   val refl_conj = Goal.prove ctxt names [] gl (fn _ => reflp_tac induct eq_iff 1);
       
    67 in
       
    68   HOLogic.conj_elims refl_conj
       
    69 end
       
    70 *}
       
    71 
       
    72 lemma exi_neg: "\<exists>(pi :: perm). P pi \<Longrightarrow> (\<And>(p :: perm). P p \<Longrightarrow> Q (- p)) \<Longrightarrow> \<exists>pi. Q pi"
       
    73 apply (erule exE)
       
    74 apply (rule_tac x="-pi" in exI)
       
    75 by auto
       
    76 
       
    77 ML {*
       
    78 fun symp_tac induct inj eqvt ctxt =
       
    79   rtac induct THEN_ALL_NEW
       
    80   simp_tac (HOL_basic_ss addsimps inj) THEN_ALL_NEW split_conj_tac
       
    81   THEN_ALL_NEW
       
    82   REPEAT o etac @{thm exi_neg}
       
    83   THEN_ALL_NEW
       
    84   split_conj_tac THEN_ALL_NEW
       
    85   asm_full_simp_tac (HOL_ss addsimps @{thms supp_minus_perm minus_add[symmetric]}) THEN_ALL_NEW
       
    86   TRY o (resolve_tac @{thms alphas_compose_sym2} ORELSE' resolve_tac @{thms alphas_compose_sym}) THEN_ALL_NEW
       
    87   (asm_full_simp_tac (HOL_ss addsimps (eqvt @ all_eqvts ctxt)))
       
    88 *}
       
    89 
       
    90 
       
    91 lemma exi_sum: "\<exists>(pi :: perm). P pi \<Longrightarrow> \<exists>(pi :: perm). Q pi \<Longrightarrow> (\<And>(p :: perm) (pi :: perm). P p \<Longrightarrow> Q pi \<Longrightarrow> R (pi + p)) \<Longrightarrow> \<exists>pi. R pi"
       
    92 apply (erule exE)+
       
    93 apply (rule_tac x="pia + pi" in exI)
       
    94 by auto
       
    95 
       
    96 
       
    97 ML {*
       
    98 fun eetac rule = 
       
    99   Subgoal.FOCUS_PARAMS (fn focus =>
       
   100     let
       
   101       val concl = #concl focus
       
   102       val prems = Logic.strip_imp_prems (term_of concl)
       
   103       val exs = filter (fn x => is_ex (HOLogic.dest_Trueprop x)) prems
       
   104       val cexs = map (SOME o (cterm_of (ProofContext.theory_of (#context focus)))) exs
       
   105       val thins = map (fn cex => Drule.instantiate' [] [cex] Drule.thin_rl) cexs
       
   106     in
       
   107       (etac rule THEN' RANGE[atac, eresolve_tac thins]) 1
       
   108     end
       
   109   )
       
   110 *}
       
   111 
       
   112 ML {*
       
   113 fun transp_tac ctxt induct alpha_inj term_inj distinct cases eqvt =
       
   114   rtac induct THEN_ALL_NEW
       
   115   (TRY o rtac allI THEN' imp_elim_tac cases ctxt) THEN_ALL_NEW
       
   116   asm_full_simp_tac (HOL_basic_ss addsimps alpha_inj) THEN_ALL_NEW
       
   117   split_conj_tac THEN_ALL_NEW REPEAT o (eetac @{thm exi_sum} ctxt) THEN_ALL_NEW split_conj_tac
       
   118   THEN_ALL_NEW (asm_full_simp_tac (HOL_ss addsimps (term_inj @ distinct)))
       
   119   THEN_ALL_NEW split_conj_tac THEN_ALL_NEW
       
   120   TRY o (eresolve_tac @{thms alphas_compose_trans2} ORELSE' eresolve_tac @{thms alphas_compose_trans}) THEN_ALL_NEW
       
   121   (asm_full_simp_tac (HOL_ss addsimps (all_eqvts ctxt @ eqvt @ term_inj @ distinct)))
       
   122 *}
       
   123 
       
   124 lemma transpI:
       
   125   "(\<And>xa ya. R xa ya \<longrightarrow> (\<forall>z. R ya z \<longrightarrow> R xa z)) \<Longrightarrow> transp R"
       
   126   unfolding transp_def
       
   127   by blast
       
   128 
       
   129 ML {*
       
   130 fun equivp_tac reflps symps transps =
       
   131   (*let val _ = tracing (PolyML.makestring (reflps, symps, transps)) in *)
       
   132   simp_tac (HOL_ss addsimps @{thms equivp_reflp_symp_transp reflp_def symp_def})
       
   133   THEN' rtac conjI THEN' rtac allI THEN'
       
   134   resolve_tac reflps THEN'
       
   135   rtac conjI THEN' rtac allI THEN' rtac allI THEN'
       
   136   resolve_tac symps THEN'
       
   137   rtac @{thm transpI} THEN' resolve_tac transps
       
   138 *}
       
   139 
       
   140 ML {*
       
   141 fun build_equivps alphas reflps alpha_induct term_inj alpha_inj distinct cases eqvt ctxt =
       
   142 let
       
   143   val ([x, y, z], ctxt') = Variable.variant_fixes ["x","y","z"] ctxt;
       
   144   val (symg, transg) = build_alpha_sym_trans_gl alphas (x, y, z)
       
   145   fun symp_tac' _ = symp_tac alpha_induct alpha_inj eqvt ctxt 1;
       
   146   fun transp_tac' _ = transp_tac ctxt alpha_induct alpha_inj term_inj distinct cases eqvt 1;
       
   147   val symp_loc = Goal.prove ctxt' [] [] symg symp_tac';
       
   148   val transp_loc = Goal.prove ctxt' [] [] transg transp_tac';
       
   149   val [symp, transp] = Variable.export ctxt' ctxt [symp_loc, transp_loc]
       
   150   val symps = HOLogic.conj_elims symp
       
   151   val transps = HOLogic.conj_elims transp
       
   152   fun equivp alpha =
       
   153     let
       
   154       val equivp = Const (@{const_name equivp}, fastype_of alpha --> @{typ bool})
       
   155       val goal = @{term Trueprop} $ (equivp $ alpha)
       
   156       fun tac _ = equivp_tac reflps symps transps 1
       
   157     in
       
   158       Goal.prove ctxt [] [] goal tac
       
   159     end
       
   160 in
       
   161   map equivp alphas
       
   162 end
       
   163 *}
       
   164 
     4 
   165 lemma not_in_union: "c \<notin> a \<union> b \<equiv> (c \<notin> a \<and> c \<notin> b)"
     5 lemma not_in_union: "c \<notin> a \<union> b \<equiv> (c \<notin> a \<and> c \<notin> b)"
   166 by auto
     6 by auto
   167 
     7 
   168 ML {*
     8 ML {*