Nominal/NewParser.thy
changeset 2022 8ffede2c8ce9
parent 2020 8468be06bff1
child 2023 e32ec6e61154
equal deleted inserted replaced
2021:f761f83e541a 2022:8ffede2c8ce9
   395   val rel_dists_bn = flat (map (distinct_rel lthy4 alpha_cases)
   395   val rel_dists_bn = flat (map (distinct_rel lthy4 alpha_cases)
   396     ((map (fn i => nth rel_distinct i) bn_nos) ~~ alpha_ts_bn))
   396     ((map (fn i => nth rel_distinct i) bn_nos) ~~ alpha_ts_bn))
   397   
   397   
   398   (* definition of raw_alpha_eq_iff  lemmas *)
   398   (* definition of raw_alpha_eq_iff  lemmas *)
   399   val alpha_eq_iff = build_rel_inj alpha_intros (inject @ distincts) alpha_cases lthy4
   399   val alpha_eq_iff = build_rel_inj alpha_intros (inject @ distincts) alpha_cases lthy4
   400   
   400   val alpha_eq_iff_simp = map (fn x => @{thm simp_thms(6)} OF [x] handle THM _ => x) alpha_eq_iff;
       
   401 
   401   (* proving equivariance lemmas *)
   402   (* proving equivariance lemmas *)
   402   val _ = warning "Proving equivariance";
   403   val _ = warning "Proving equivariance";
   403   val (bv_eqvt, lthy5) = prove_eqvt raw_tys induct (raw_bn_eqs @ raw_perm_def) (map fst bns) lthy4
   404   val (bv_eqvt, lthy5) = prove_eqvt raw_tys induct (raw_bn_eqs @ raw_perm_def) (map fst bns) lthy4
   404   val (fv_eqvt, lthy6) = prove_eqvt raw_tys induct (fv_def @ raw_perm_def) (fv @ fvbn) lthy5
   405   val (fv_eqvt, lthy6) = prove_eqvt raw_tys induct (fv_def @ raw_perm_def) (fv @ fvbn) lthy5
   405   fun alpha_eqvt_tac' _ =
   406   fun alpha_eqvt_tac' _ =
   406     if !cheat_alpha_eqvt then Skip_Proof.cheat_tac thy
   407     if !cheat_alpha_eqvt then Skip_Proof.cheat_tac thy
   407     else alpha_eqvt_tac alpha_induct (raw_perm_def @ alpha_eq_iff) lthy6 1
   408     else alpha_eqvt_tac alpha_induct (raw_perm_def @ alpha_eq_iff_simp) lthy6 1
   408   val alpha_eqvt = build_alpha_eqvts alpha_ts alpha_eqvt_tac' lthy6;
   409   val alpha_eqvt = build_alpha_eqvts alpha_ts alpha_eqvt_tac' lthy6;
   409 
   410 
   410   (* provind alpha equivalence *)
   411   (* provind alpha equivalence *)
   411   val _ = warning "Proving equivalence";
   412   val _ = warning "Proving equivalence";
   412   val fv_alpha_all = combine_fv_alpha_bns (fv, fvbn) (alpha_ts_nobn, alpha_ts_bn) bn_nos;
   413   val fv_alpha_all = combine_fv_alpha_bns (fv, fvbn) (alpha_ts_nobn, alpha_ts_bn) bn_nos;
   413   val reflps = build_alpha_refl fv_alpha_all alpha_ts induct alpha_eq_iff lthy6;
   414   val reflps = build_alpha_refl fv_alpha_all alpha_ts induct alpha_eq_iff_simp lthy6;
   414   val alpha_equivp =
   415   val alpha_equivp =
   415     if !cheat_equivp then map (equivp_hack lthy6) alpha_ts
   416     if !cheat_equivp then map (equivp_hack lthy6) alpha_ts
   416     else build_equivps alpha_ts reflps alpha_induct
   417     else build_equivps alpha_ts reflps alpha_induct
   417       inject alpha_eq_iff distincts alpha_cases alpha_eqvt lthy6;
   418       inject alpha_eq_iff_simp distincts alpha_cases alpha_eqvt lthy6;
   418   val qty_binds = map (fn (_, b, _, _) => b) dts;
   419   val qty_binds = map (fn (_, b, _, _) => b) dts;
   419   val qty_names = map Name.of_binding qty_binds;
   420   val qty_names = map Name.of_binding qty_binds;
   420   val qty_full_names = map (Long_Name.qualify thy_name) qty_names
   421   val qty_full_names = map (Long_Name.qualify thy_name) qty_names
   421   val (qtys, lthy7) = define_quotient_types qty_binds all_typs alpha_ts_nobn alpha_equivp lthy6;
   422   val (qtys, lthy7) = define_quotient_types qty_binds all_typs alpha_ts_nobn alpha_equivp lthy6;
   422   val const_names = map Name.of_binding (flat (map (fn (_, _, _, t) => map (fn (b, _, _) => b) t) dts));
   423   val const_names = map Name.of_binding (flat (map (fn (_, _, _, t) => map (fn (b, _, _) => b) t) dts));
   440     (fn fv => fn ctxt => prove_const_rsp qtys Binding.empty [fv]
   441     (fn fv => fn ctxt => prove_const_rsp qtys Binding.empty [fv]
   441     (fn _ => asm_simp_tac (HOL_ss addsimps fv_rsps) 1) ctxt) (fv @ fvbn) lthy9;
   442     (fn _ => asm_simp_tac (HOL_ss addsimps fv_rsps) 1) ctxt) (fv @ fvbn) lthy9;
   442   val fv_rsp = flat (map snd fv_rsp_pre);
   443   val fv_rsp = flat (map snd fv_rsp_pre);
   443   val (perms_rsp, lthy11) = prove_const_rsp qtys Binding.empty perms
   444   val (perms_rsp, lthy11) = prove_const_rsp qtys Binding.empty perms
   444     (fn _ => asm_simp_tac (HOL_ss addsimps alpha_eqvt) 1) lthy10;
   445     (fn _ => asm_simp_tac (HOL_ss addsimps alpha_eqvt) 1) lthy10;
   445 (*  val alpha_bn_rsp_pre = prove_alpha_bn_rsp alpha_ts alpha_induct (alpha_eq_iff @ rel_dists @ rel_dists_bn) alpha_equivp exhausts alpha_ts_bn lthy11;*)
   446 (*  val alpha_bn_rsp_pre = prove_alpha_bn_rsp alpha_ts alpha_induct (alpha_eq_iff_simp @ rel_dists @ rel_dists_bn) alpha_equivp exhausts alpha_ts_bn lthy11;*)
   446   val (alpha_bn_rsps, lthy11a) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst]
   447   val (alpha_bn_rsps, lthy11a) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst]
   447         (fn _ => Skip_Proof.cheat_tac thy)) alpha_ts_bn lthy11
   448         (fn _ => Skip_Proof.cheat_tac thy)) alpha_ts_bn lthy11
   448   fun const_rsp_tac _ =
   449   fun const_rsp_tac _ =
   449     let val alpha_alphabn = prove_alpha_alphabn alpha_ts alpha_induct alpha_eq_iff alpha_ts_bn lthy11a
   450     let val alpha_alphabn = prove_alpha_alphabn alpha_ts alpha_induct alpha_eq_iff_simp alpha_ts_bn lthy11a
   450       in constr_rsp_tac alpha_eq_iff (fv_rsp @ bns_rsp @ reflps @ alpha_alphabn) 1 end
   451       in constr_rsp_tac alpha_eq_iff_simp (fv_rsp @ bns_rsp @ reflps @ alpha_alphabn) 1 end
   451   val (const_rsps, lthy12) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst]
   452   val (const_rsps, lthy12) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst]
   452     const_rsp_tac) raw_consts lthy11a
   453     const_rsp_tac) raw_consts lthy11a
   453     val qfv_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) (fv @ fvbn)
   454     val qfv_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) (fv @ fvbn)
   454   val (qfv_ts, qfv_defs, lthy12a) = quotient_lift_consts_export qtys (qfv_names ~~ (fv @ fvbn)) lthy12;
   455   val (qfv_ts, qfv_defs, lthy12a) = quotient_lift_consts_export qtys (qfv_names ~~ (fv @ fvbn)) lthy12;
   455   val (qfv_ts_nobn, qfv_ts_bn) = chop (length perms) qfv_ts;
   456   val (qfv_ts_nobn, qfv_ts_bn) = chop (length perms) qfv_ts;
   507   fun tac _ = Class.intro_classes_tac [] THEN (ALLGOALS (resolve_tac fin_supp))
   508   fun tac _ = Class.intro_classes_tac [] THEN (ALLGOALS (resolve_tac fin_supp))
   508   val lthy22 = Class.prove_instantiation_instance tac lthy21
   509   val lthy22 = Class.prove_instantiation_instance tac lthy21
   509   val fv_alpha_all = combine_fv_alpha_bns (qfv_ts_nobn, qfv_ts_bn) (alpha_ts_nobn, qalpha_ts_bn) bn_nos;
   510   val fv_alpha_all = combine_fv_alpha_bns (qfv_ts_nobn, qfv_ts_bn) (alpha_ts_nobn, qalpha_ts_bn) bn_nos;
   510   val (names, supp_eq_t) = supp_eq fv_alpha_all;
   511   val (names, supp_eq_t) = supp_eq fv_alpha_all;
   511   val _ = warning "Support Equations";
   512   val _ = warning "Support Equations";
       
   513   val q_eq_iff_simp = map (fn x => @{thm simp_thms(6)} OF [x] handle THM _ => x) q_eq_iff;
   512   (*supp_eq_tac q_induct q_fv q_perm q_eq_iff lthy22 1*)
   514   (*supp_eq_tac q_induct q_fv q_perm q_eq_iff lthy22 1*)
   513   val q_supp = HOLogic.conj_elims (Goal.prove lthy22 names [] supp_eq_t (fn _ => Skip_Proof.cheat_tac thy)) handle _ => [];
   515   val q_supp = HOLogic.conj_elims (Goal.prove lthy22 names [] supp_eq_t (fn _ => Skip_Proof.cheat_tac thy)) handle _ => [];
   514   val lthy23 = note_suffix "supp" q_supp lthy22;
   516   val lthy23 = note_suffix "supp" q_supp lthy22;
   515 in
   517 in
   516   (0, lthy23)
   518   (0, lthy23)