Nominal/nominal_dt_alpha.ML
changeset 2476 8f8652a8107f
parent 2475 486d4647bb37
child 2477 2f289c1f6cf1
equal deleted inserted replaced
2475:486d4647bb37 2476:8f8652a8107f
    43 
    43 
    44 (** definition of the inductive rules for alpha and alpha_bn **)
    44 (** definition of the inductive rules for alpha and alpha_bn **)
    45 
    45 
    46 (* construct the compound terms for prod_fv and prod_alpha *)
    46 (* construct the compound terms for prod_fv and prod_alpha *)
    47 fun mk_prod_fv (t1, t2) =
    47 fun mk_prod_fv (t1, t2) =
    48 let
    48   let
    49   val ty1 = fastype_of t1
    49     val ty1 = fastype_of t1
    50   val ty2 = fastype_of t2 
    50     val ty2 = fastype_of t2 
    51   val resT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) --> @{typ "atom set"}
    51     val resT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) --> @{typ "atom set"}
    52 in
    52   in
    53   Const (@{const_name "prod_fv"}, [ty1, ty2] ---> resT) $ t1 $ t2
    53     Const (@{const_name "prod_fv"}, [ty1, ty2] ---> resT) $ t1 $ t2
    54 end
    54   end
    55 
    55 
    56 fun mk_prod_alpha (t1, t2) =
    56 fun mk_prod_alpha (t1, t2) =
    57 let
    57   let
    58   val ty1 = fastype_of t1
    58     val ty1 = fastype_of t1
    59   val ty2 = fastype_of t2 
    59     val ty2 = fastype_of t2 
    60   val prodT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2)
    60     val prodT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2)
    61   val resT = [prodT, prodT] ---> @{typ "bool"}
    61     val resT = [prodT, prodT] ---> @{typ "bool"}
    62 in
    62   in
    63   Const (@{const_name "prod_alpha"}, [ty1, ty2] ---> resT) $ t1 $ t2
    63     Const (@{const_name "prod_alpha"}, [ty1, ty2] ---> resT) $ t1 $ t2
    64 end
    64   end
    65 
    65 
    66 (* generates the compound binder terms *)
    66 (* generates the compound binder terms *)
    67 fun mk_binders lthy bmode args binders = 
    67 fun mk_binders lthy bmode args binders = 
    68 let  
    68   let  
    69   fun bind_set lthy args (NONE, i) = setify lthy (nth args i)
    69     fun bind_set lthy args (NONE, i) = setify lthy (nth args i)
    70     | bind_set _ args (SOME bn, i) = bn $ (nth args i)
    70       | bind_set _ args (SOME bn, i) = bn $ (nth args i)
    71   fun bind_lst lthy args (NONE, i) = listify lthy (nth args i)
    71     fun bind_lst lthy args (NONE, i) = listify lthy (nth args i)
    72     | bind_lst _ args (SOME bn, i) = bn $ (nth args i)
    72       | bind_lst _ args (SOME bn, i) = bn $ (nth args i)
    73 
    73 
    74   val (combine_fn, bind_fn) =
    74     val (combine_fn, bind_fn) =
    75     case bmode of
    75       case bmode of
    76       Lst => (mk_append, bind_lst) 
    76         Lst => (mk_append, bind_lst) 
    77     | Set => (mk_union,  bind_set)
    77       | Set => (mk_union,  bind_set)
    78     | Res => (mk_union,  bind_set)
    78       | Res => (mk_union,  bind_set)
    79 in
    79   in
    80   binders
    80     binders
    81   |> map (bind_fn lthy args)
    81     |> map (bind_fn lthy args)
    82   |> foldl1 combine_fn 
    82     |> foldl1 combine_fn 
    83 end
    83   end
    84 
    84 
    85 (* produces the term for an alpha with abstraction *)
    85 (* produces the term for an alpha with abstraction *)
    86 fun mk_alpha_term bmode fv alpha args args' binders binders' =
    86 fun mk_alpha_term bmode fv alpha args args' binders binders' =
    87 let
    87   let
    88   val (alpha_name, binder_ty) = 
    88     val (alpha_name, binder_ty) = 
    89     case bmode of
    89       case bmode of
    90       Lst => (@{const_name "alpha_lst"}, @{typ "atom list"})
    90         Lst => (@{const_name "alpha_lst"}, @{typ "atom list"})
    91     | Set => (@{const_name "alpha_set"}, @{typ "atom set"})
    91       | Set => (@{const_name "alpha_set"}, @{typ "atom set"})
    92     | Res => (@{const_name "alpha_res"}, @{typ "atom set"})
    92       | Res => (@{const_name "alpha_res"}, @{typ "atom set"})
    93   val ty = fastype_of args
    93     val ty = fastype_of args
    94   val pair_ty = HOLogic.mk_prodT (binder_ty, ty)
    94     val pair_ty = HOLogic.mk_prodT (binder_ty, ty)
    95   val alpha_ty = [ty, ty] ---> @{typ "bool"}
    95     val alpha_ty = [ty, ty] ---> @{typ "bool"}
    96   val fv_ty = ty --> @{typ "atom set"}
    96     val fv_ty = ty --> @{typ "atom set"}
    97   val pair_lhs = HOLogic.mk_prod (binders, args)
    97     val pair_lhs = HOLogic.mk_prod (binders, args)
    98   val pair_rhs = HOLogic.mk_prod (binders', args')
    98     val pair_rhs = HOLogic.mk_prod (binders', args')
    99 in
    99   in
   100   HOLogic.exists_const @{typ perm} $ Abs ("p", @{typ perm},
   100     HOLogic.exists_const @{typ perm} $ Abs ("p", @{typ perm},
   101     Const (alpha_name, [pair_ty, alpha_ty, fv_ty, @{typ "perm"}, pair_ty] ---> @{typ bool}) 
   101       Const (alpha_name, [pair_ty, alpha_ty, fv_ty, @{typ "perm"}, pair_ty] ---> @{typ bool}) 
   102       $ pair_lhs $ alpha $ fv $ (Bound 0) $ pair_rhs)
   102         $ pair_lhs $ alpha $ fv $ (Bound 0) $ pair_rhs)
   103 end
   103   end
   104 
   104 
   105 (* for non-recursive binders we have to produce alpha_bn premises *)
   105 (* for non-recursive binders we have to produce alpha_bn premises *)
   106 fun mk_alpha_bn_prem alpha_bn_map args args' bodies binder = 
   106 fun mk_alpha_bn_prem alpha_bn_map args args' bodies binder = 
   107   case binder of
   107   case binder of
   108     (NONE, _) => []
   108     (NONE, _) => []
   111      else [lookup alpha_bn_map bn $ nth args i $ nth args' i]
   111      else [lookup alpha_bn_map bn $ nth args i $ nth args' i]
   112 
   112 
   113 (* generate the premises for an alpha rule; mk_frees is used
   113 (* generate the premises for an alpha rule; mk_frees is used
   114    if no binders are present *)
   114    if no binders are present *)
   115 fun mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause =
   115 fun mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause =
   116 let
   116   let
   117   fun mk_frees i =
   117     fun mk_frees i =
   118     let
   118       let
   119       val arg = nth args i
   119         val arg = nth args i
   120       val arg' = nth args' i
   120         val arg' = nth args' i
   121       val ty = fastype_of arg
   121         val ty = fastype_of arg
   122     in
   122       in
   123       if nth is_rec i
   123         if nth is_rec i
   124       then fst (lookup alpha_map ty) $ arg $ arg'
   124         then fst (lookup alpha_map ty) $ arg $ arg'
   125       else HOLogic.mk_eq (arg, arg')
   125         else HOLogic.mk_eq (arg, arg')
   126     end
   126       end
   127 
   127 
   128   fun mk_alpha_fv i = 
   128     fun mk_alpha_fv i = 
   129     let
   129       let
   130       val ty = fastype_of (nth args i)
   130         val ty = fastype_of (nth args i)
   131     in
   131       in
   132       case AList.lookup (op=) alpha_map ty of
   132         case AList.lookup (op=) alpha_map ty of
   133         NONE => (HOLogic.eq_const ty, supp_const ty) 
   133           NONE => (HOLogic.eq_const ty, supp_const ty) 
   134       | SOME (alpha, fv) => (alpha, fv) 
   134         | SOME (alpha, fv) => (alpha, fv) 
   135     end  
   135       end  
   136 in
   136   in
   137   case bclause of
   137     case bclause of
   138     BC (_, [], bodies) => map (HOLogic.mk_Trueprop o mk_frees) bodies 
   138       BC (_, [], bodies) => map (HOLogic.mk_Trueprop o mk_frees) bodies 
   139   | BC (bmode, binders, bodies) => 
   139     | BC (bmode, binders, bodies) => 
   140     let
   140         let
   141       val (alphas, fvs) = split_list (map mk_alpha_fv bodies)
   141           val (alphas, fvs) = split_list (map mk_alpha_fv bodies)
   142       val comp_fv = foldl1 mk_prod_fv fvs
   142           val comp_fv = foldl1 mk_prod_fv fvs
   143       val comp_alpha = foldl1 mk_prod_alpha alphas
   143           val comp_alpha = foldl1 mk_prod_alpha alphas
   144       val comp_args = foldl1 HOLogic.mk_prod (map (nth args) bodies)
   144           val comp_args = foldl1 HOLogic.mk_prod (map (nth args) bodies)
   145       val comp_args' = foldl1 HOLogic.mk_prod (map (nth args') bodies)
   145           val comp_args' = foldl1 HOLogic.mk_prod (map (nth args') bodies)
   146       val comp_binders = mk_binders lthy bmode args binders
   146           val comp_binders = mk_binders lthy bmode args binders
   147       val comp_binders' = mk_binders lthy bmode args' binders
   147           val comp_binders' = mk_binders lthy bmode args' binders
   148       val alpha_prem = 
   148           val alpha_prem = 
   149         mk_alpha_term bmode comp_fv comp_alpha comp_args comp_args' comp_binders comp_binders'
   149             mk_alpha_term bmode comp_fv comp_alpha comp_args comp_args' comp_binders comp_binders'
   150       val alpha_bn_prems = flat (map (mk_alpha_bn_prem alpha_bn_map args args' bodies) binders)
   150           val alpha_bn_prems = flat (map (mk_alpha_bn_prem alpha_bn_map args args' bodies) binders)
   151     in
   151         in
   152       map HOLogic.mk_Trueprop (alpha_prem::alpha_bn_prems)
   152           map HOLogic.mk_Trueprop (alpha_prem::alpha_bn_prems)
   153     end
   153         end
   154 end
   154   end
   155 
   155 
   156 (* produces the introduction rule for an alpha rule *)
   156 (* produces the introduction rule for an alpha rule *)
   157 fun mk_alpha_intros lthy alpha_map alpha_bn_map (constr, ty, arg_tys, is_rec) bclauses = 
   157 fun mk_alpha_intros lthy alpha_map alpha_bn_map (constr, ty, arg_tys, is_rec) bclauses = 
   158 let
   158   let
   159   val arg_names = Datatype_Prop.make_tnames arg_tys
   159     val arg_names = Datatype_Prop.make_tnames arg_tys
   160   val arg_names' = Name.variant_list arg_names arg_names
   160     val arg_names' = Name.variant_list arg_names arg_names
   161   val args = map Free (arg_names ~~ arg_tys)
   161     val args = map Free (arg_names ~~ arg_tys)
   162   val args' = map Free (arg_names' ~~ arg_tys)
   162     val args' = map Free (arg_names' ~~ arg_tys)
   163   val alpha = fst (lookup alpha_map ty)
   163     val alpha = fst (lookup alpha_map ty)
   164   val concl = HOLogic.mk_Trueprop (alpha $ list_comb (constr, args) $ list_comb (constr, args'))
   164     val concl = HOLogic.mk_Trueprop (alpha $ list_comb (constr, args) $ list_comb (constr, args'))
   165   val prems = map (mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args')) bclauses
   165     val prems = map (mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args')) bclauses
   166 in
   166   in
   167   Library.foldr Logic.mk_implies (flat prems, concl)
   167     Library.foldr Logic.mk_implies (flat prems, concl)
   168 end
   168   end
   169 
   169 
   170 (* produces the premise of an alpha-bn rule; we only need to
   170 (* produces the premise of an alpha-bn rule; we only need to
   171    treat the case special where the binding clause is empty;
   171    treat the case special where the binding clause is empty;
   172    
   172    
   173    - if the body is not included in the bn_info, then we either
   173    - if the body is not included in the bn_info, then we either
   174      produce an equation or an alpha-premise
   174      produce an equation or an alpha-premise
   175 
   175 
   176    - if the body is included in the bn_info, then we create
   176    - if the body is included in the bn_info, then we create
   177      either a recursive call to alpha-bn, or no premise  *)
   177      either a recursive call to alpha-bn, or no premise  *)
   178 fun mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args') bclause =
   178 fun mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args') bclause =
   179 let
   179   let
   180   fun mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args') i = 
   180     fun mk_alpha_bn_prem i = 
   181   let
   181       let
   182     val arg = nth args i
   182         val arg = nth args i
   183     val arg' = nth args' i
   183         val arg' = nth args' i
   184     val ty = fastype_of arg
   184         val ty = fastype_of arg
   185   in
   185       in
   186     case AList.lookup (op=) bn_args i of
   186         case AList.lookup (op=) bn_args i of
   187       NONE => (case (AList.lookup (op=) alpha_map ty) of
   187           NONE => (case (AList.lookup (op=) alpha_map ty) of
   188                  NONE =>  [HOLogic.mk_eq (arg, arg')]
   188                      NONE =>  [HOLogic.mk_eq (arg, arg')]
   189                | SOME (alpha, _) => [alpha $ arg $ arg'])
   189                    | SOME (alpha, _) => [alpha $ arg $ arg'])
   190     | SOME (NONE) => []
   190         | SOME (NONE) => []
   191     | SOME (SOME bn) => [lookup alpha_bn_map bn $ arg $ arg']
   191         | SOME (SOME bn) => [lookup alpha_bn_map bn $ arg $ arg']
   192   end  
   192       end  
   193 in
   193   in
   194   case bclause of
   194     case bclause of
   195     BC (_, [], bodies) => 
   195       BC (_, [], bodies) => 
   196       map HOLogic.mk_Trueprop 
   196         map HOLogic.mk_Trueprop (flat (map mk_alpha_bn_prem bodies))
   197         (flat (map (mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args')) bodies))
   197     | _ => mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause
   198   | _ => mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause
   198   end
   199 end
       
   200 
   199 
   201 fun mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map (bn_args, (constr, _, arg_tys, is_rec)) bclauses =
   200 fun mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map (bn_args, (constr, _, arg_tys, is_rec)) bclauses =
   202 let
   201   let
   203   val arg_names = Datatype_Prop.make_tnames arg_tys
   202     val arg_names = Datatype_Prop.make_tnames arg_tys
   204   val arg_names' = Name.variant_list arg_names arg_names
   203     val arg_names' = Name.variant_list arg_names arg_names
   205   val args = map Free (arg_names ~~ arg_tys)
   204     val args = map Free (arg_names ~~ arg_tys)
   206   val args' = map Free (arg_names' ~~ arg_tys)
   205     val args' = map Free (arg_names' ~~ arg_tys)
   207   val alpha_bn = lookup alpha_bn_map bn_trm
   206     val alpha_bn = lookup alpha_bn_map bn_trm
   208   val concl = HOLogic.mk_Trueprop (alpha_bn $ list_comb (constr, args) $ list_comb (constr, args'))
   207     val concl = HOLogic.mk_Trueprop (alpha_bn $ list_comb (constr, args) $ list_comb (constr, args'))
   209   val prems = map (mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args')) bclauses
   208     val prems = map (mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args')) bclauses
   210 in
   209   in
   211   Library.foldr Logic.mk_implies (flat prems, concl)
   210     Library.foldr Logic.mk_implies (flat prems, concl)
   212 end
   211   end
   213 
   212 
   214 fun mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) = 
   213 fun mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) = 
   215 let
   214   let
   216   val nth_constrs_info = nth constrs_info bn_n
   215     val nth_constrs_info = nth constrs_info bn_n
   217   val nth_bclausess = nth bclausesss bn_n
   216     val nth_bclausess = nth bclausesss bn_n
   218 in
   217   in
   219   map2 (mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
   218     map2 (mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
   220 end
   219   end
   221 
   220 
   222 fun define_raw_alpha raw_full_ty_names raw_tys cns_info bn_info bclausesss fvs lthy =
   221 fun define_raw_alpha raw_full_ty_names raw_tys cns_info bn_info bclausesss fvs lthy =
   223 let
   222   let
   224   val alpha_names = map (prefix "alpha_" o Long_Name.base_name) raw_full_ty_names
   223     val alpha_names = map (prefix "alpha_" o Long_Name.base_name) raw_full_ty_names
   225   val alpha_tys = map (fn ty => [ty, ty] ---> @{typ bool}) raw_tys
   224     val alpha_tys = map (fn ty => [ty, ty] ---> @{typ bool}) raw_tys
   226   val alpha_frees = map Free (alpha_names ~~ alpha_tys)
   225     val alpha_frees = map Free (alpha_names ~~ alpha_tys)
   227   val alpha_map = raw_tys ~~ (alpha_frees ~~ fvs)
   226     val alpha_map = raw_tys ~~ (alpha_frees ~~ fvs)
   228 
   227 
   229   val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
   228     val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
   230   val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
   229     val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
   231   val alpha_bn_names = map (prefix "alpha_") bn_names
   230     val alpha_bn_names = map (prefix "alpha_") bn_names
   232   val alpha_bn_arg_tys = map (nth raw_tys) bn_tys
   231     val alpha_bn_arg_tys = map (nth raw_tys) bn_tys
   233   val alpha_bn_tys = map (fn ty => [ty, ty] ---> @{typ "bool"}) alpha_bn_arg_tys
   232     val alpha_bn_tys = map (fn ty => [ty, ty] ---> @{typ "bool"}) alpha_bn_arg_tys
   234   val alpha_bn_frees = map Free (alpha_bn_names ~~ alpha_bn_tys)
   233     val alpha_bn_frees = map Free (alpha_bn_names ~~ alpha_bn_tys)
   235   val alpha_bn_map = bns ~~ alpha_bn_frees
   234     val alpha_bn_map = bns ~~ alpha_bn_frees
   236 
   235 
   237   val alpha_intros = map2 (map2 (mk_alpha_intros lthy alpha_map alpha_bn_map)) cns_info bclausesss 
   236     val alpha_intros = map2 (map2 (mk_alpha_intros lthy alpha_map alpha_bn_map)) cns_info bclausesss 
   238   val alpha_bn_intros = map (mk_alpha_bn_intros lthy alpha_map alpha_bn_map cns_info bclausesss) bn_info
   237     val alpha_bn_intros = map (mk_alpha_bn_intros lthy alpha_map alpha_bn_map cns_info bclausesss) bn_info
   239 
   238 
   240   val all_alpha_names = map (fn (a, ty) => ((Binding.name a, ty), NoSyn))
   239     val all_alpha_names = map (fn (a, ty) => ((Binding.name a, ty), NoSyn))
   241     (alpha_names @ alpha_bn_names ~~ alpha_tys @ alpha_bn_tys)
   240       (alpha_names @ alpha_bn_names ~~ alpha_tys @ alpha_bn_tys)
   242   val all_alpha_intros = map (pair Attrib.empty_binding) (flat alpha_intros @ flat alpha_bn_intros)
   241     val all_alpha_intros = map (pair Attrib.empty_binding) (flat alpha_intros @ flat alpha_bn_intros)
   243 
   242 
   244   val (alphas, lthy') = Inductive.add_inductive_i
   243     val (alphas, lthy') = Inductive.add_inductive_i
   245      {quiet_mode = true, verbose = false, alt_name = Binding.empty,
   244        {quiet_mode = true, verbose = false, alt_name = Binding.empty,
   246       coind = false, no_elim = false, no_ind = false, skip_mono = false, fork_mono = false}
   245         coind = false, no_elim = false, no_ind = false, skip_mono = false, fork_mono = false}
   247      all_alpha_names [] all_alpha_intros [] lthy
   246          all_alpha_names [] all_alpha_intros [] lthy
   248 
   247 
   249   val all_alpha_trms_loc = #preds alphas;
   248     val all_alpha_trms_loc = #preds alphas;
   250   val alpha_induct_loc = #raw_induct alphas;
   249     val alpha_induct_loc = #raw_induct alphas;
   251   val alpha_intros_loc = #intrs alphas;
   250     val alpha_intros_loc = #intrs alphas;
   252   val alpha_cases_loc = #elims alphas;
   251     val alpha_cases_loc = #elims alphas;
   253   val phi = ProofContext.export_morphism lthy' lthy;
   252     val phi = ProofContext.export_morphism lthy' lthy;
   254 
   253 
   255   val all_alpha_trms = map (Morphism.term phi) all_alpha_trms_loc
   254     val all_alpha_trms = map (Morphism.term phi) all_alpha_trms_loc
   256   val (all_alpha_trms', _) = Variable.importT_terms all_alpha_trms lthy  
   255     val (all_alpha_trms', _) = Variable.importT_terms all_alpha_trms lthy  
   257   val alpha_induct = Morphism.thm phi alpha_induct_loc;
   256     val alpha_induct = Morphism.thm phi alpha_induct_loc;
   258   val alpha_intros = map (Morphism.thm phi) alpha_intros_loc
   257     val alpha_intros = map (Morphism.thm phi) alpha_intros_loc
   259   val alpha_cases = map (Morphism.thm phi) alpha_cases_loc
   258     val alpha_cases = map (Morphism.thm phi) alpha_cases_loc
   260 
   259 
   261   val (alpha_trms, alpha_bn_trms) = chop (length fvs) all_alpha_trms'
   260     val (alpha_trms, alpha_bn_trms) = chop (length fvs) all_alpha_trms'
   262 in
   261   in
   263   (alpha_trms, alpha_bn_trms, alpha_intros, alpha_cases, alpha_induct, lthy')
   262     (alpha_trms, alpha_bn_trms, alpha_intros, alpha_cases, alpha_induct, lthy')
   264 end
   263   end
   265 
   264 
   266 
   265 
   267 
   266 
   268 (** produces the distinctness theorems **)
   267 (** produces the distinctness theorems **)
   269 
   268 
   270 (* transforms the distinctness theorems of the constructors 
   269 (* transforms the distinctness theorems of the constructors 
   271    to "not-alphas" of the constructors *)
   270    to "not-alphas" of the constructors *)
   272 fun mk_distinct_goal ty_trm_assoc neq =
   271 fun mk_distinct_goal ty_trm_assoc neq =
   273 let
   272   let
   274   val (lhs, rhs) = 
   273     val (lhs, rhs) = 
   275     neq
   274       neq
   276     |> HOLogic.dest_Trueprop
   275       |> HOLogic.dest_Trueprop
   277     |> HOLogic.dest_not
   276       |> HOLogic.dest_not
   278     |> HOLogic.dest_eq
   277       |> HOLogic.dest_eq
   279   val ty = fastype_of lhs
   278     val ty = fastype_of lhs
   280 in
   279   in
   281   (lookup ty_trm_assoc ty) $ lhs $ rhs
   280     (lookup ty_trm_assoc ty) $ lhs $ rhs
   282   |> HOLogic.mk_not
   281     |> HOLogic.mk_not
   283   |> HOLogic.mk_Trueprop
   282     |> HOLogic.mk_Trueprop
   284 end
   283   end
   285 
   284 
   286 fun distinct_tac cases_thms distinct_thms =
   285 fun distinct_tac cases_thms distinct_thms =
   287   rtac notI THEN' eresolve_tac cases_thms 
   286   rtac notI THEN' eresolve_tac cases_thms 
   288   THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps distinct_thms)
   287   THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps distinct_thms)
   289 
   288 
   290 
   289 
   291 fun mk_alpha_distincts ctxt cases_thms distinct_thms alpha_trms alpha_tys =
   290 fun mk_alpha_distincts ctxt cases_thms distinct_thms alpha_trms alpha_tys =
   292 let
   291   let
   293   (* proper import of type-variables does not work,
   292     (* proper import of type-variables does not work,
   294      since then they are replaced by new variables, messing
   293        since then they are replaced by new variables, messing
   295      up the ty_term assoc list *)
   294        up the ty_trm assoc list *)
   296   val distinct_thms' = map Thm.legacy_freezeT distinct_thms
   295     val distinct_thms' = map Thm.legacy_freezeT distinct_thms
   297   val ty_trm_assoc = alpha_tys ~~ alpha_trms
   296     val ty_trm_assoc = alpha_tys ~~ alpha_trms
   298 
   297 
   299   fun mk_alpha_distinct distinct_trm =
   298     fun mk_alpha_distinct distinct_trm =
   300   let
   299       let
   301     val ([trm'], ctxt') = Variable.import_terms true [distinct_trm] ctxt
   300         val ([trm'], ctxt') = Variable.import_terms true [distinct_trm] ctxt
   302     val goal = mk_distinct_goal ty_trm_assoc distinct_trm
   301         val goal = mk_distinct_goal ty_trm_assoc distinct_trm
   303   in
   302     in
   304     Goal.prove ctxt' [] [] goal 
   303       Goal.prove ctxt' [] [] goal 
   305       (K (distinct_tac cases_thms distinct_thms 1))
   304         (K (distinct_tac cases_thms distinct_thms 1))
   306     |> singleton (Variable.export ctxt' ctxt)
   305       |> singleton (Variable.export ctxt' ctxt)
   307   end
   306     end
   308     
   307     
   309 in
   308   in
   310   map (mk_alpha_distinct o prop_of) distinct_thms'
   309     map (mk_alpha_distinct o prop_of) distinct_thms'
   311   |> map Thm.varifyT_global
   310     |> map Thm.varifyT_global
   312 end
   311   end
   313 
   312 
   314 
   313 
   315 
   314 
   316 (** produces the alpha_eq_iff simplification rules **)
   315 (** produces the alpha_eq_iff simplification rules **)
   317 
   316 
   339     if hyps = [] then HOLogic.mk_Trueprop concl
   338     if hyps = [] then HOLogic.mk_Trueprop concl
   340     else HOLogic.mk_Trueprop (HOLogic.mk_eq (concl, list_conj hyps))
   339     else HOLogic.mk_Trueprop (HOLogic.mk_eq (concl, list_conj hyps))
   341   end;
   340   end;
   342 
   341 
   343 fun mk_alpha_eq_iff ctxt alpha_intros distinct_thms inject_thms alpha_elims =
   342 fun mk_alpha_eq_iff ctxt alpha_intros distinct_thms inject_thms alpha_elims =
   344 let
   343   let
   345   val ((_, thms_imp), ctxt') = Variable.import false alpha_intros ctxt;
   344     val ((_, thms_imp), ctxt') = Variable.import false alpha_intros ctxt;
   346   val goals = map mk_alpha_eq_iff_goal thms_imp;
   345     val goals = map mk_alpha_eq_iff_goal thms_imp;
   347   val tac = alpha_eq_iff_tac (distinct_thms @ inject_thms) alpha_intros alpha_elims 1;
   346     val tac = alpha_eq_iff_tac (distinct_thms @ inject_thms) alpha_intros alpha_elims 1;
   348   val thms = map (fn goal => Goal.prove ctxt' [] [] goal (K tac)) goals;
   347     val thms = map (fn goal => Goal.prove ctxt' [] [] goal (K tac)) goals;
   349 in
   348   in
   350   Variable.export ctxt' ctxt thms
   349     Variable.export ctxt' ctxt thms
   351   |> map mk_simp_rule
   350     |> map mk_simp_rule
   352 end
   351   end
   353 
   352 
   354 
   353 
   355 (** proof by induction over the alpha-definitions **)
   354 (** proof by induction over the alpha-definitions **)
   356 
   355 
   357 fun is_true @{term "Trueprop True"} = true
   356 fun is_true @{term "Trueprop True"} = true
   358   | is_true _ = false 
   357   | is_true _ = false 
   359 
   358 
   360 fun alpha_prove alphas props alpha_induct_thm cases_tac ctxt =
   359 fun alpha_prove alphas props alpha_induct_thm cases_tac ctxt =
   361 let
   360   let
   362   val arg_tys = map (domain_type o fastype_of) alphas
   361     val arg_tys = map (domain_type o fastype_of) alphas
   363 
   362 
   364   val ((arg_names1, arg_names2), ctxt') =
   363     val ((arg_names1, arg_names2), ctxt') =
   365     ctxt
   364       ctxt
   366     |> Variable.variant_fixes (replicate (length alphas) "x") 
   365       |> Variable.variant_fixes (replicate (length alphas) "x") 
   367     ||>> Variable.variant_fixes (replicate (length alphas) "y")
   366       ||>> Variable.variant_fixes (replicate (length alphas) "y")
   368 
   367 
   369   val args1 = map2 (curry Free) arg_names1 arg_tys
   368     val args1 = map2 (curry Free) arg_names1 arg_tys
   370   val args2 = map2 (curry Free) arg_names2 arg_tys
   369     val args2 = map2 (curry Free) arg_names2 arg_tys
   371 
   370 
   372   val true_trms = replicate (length alphas) (K @{term True})
   371     val true_trms = replicate (length alphas) (K @{term True})
   373   
   372   
   374   fun apply_all x fs = map (fn f => f x) fs
   373     fun apply_all x fs = map (fn f => f x) fs
   375   val goals_rhs = 
   374       val goals_rhs = 
   376     group (props @ (alphas ~~ true_trms))
   375         group (props @ (alphas ~~ true_trms))
   377     |> map snd 
   376         |> map snd 
   378     |> map2 apply_all (args1 ~~ args2)
   377         |> map2 apply_all (args1 ~~ args2)
   379     |> map fold_conj
   378         |> map fold_conj
   380 
   379 
   381   fun apply_trm_pair t (ar1, ar2) = t $ ar1 $ ar2
   380     fun apply_trm_pair t (ar1, ar2) = t $ ar1 $ ar2
   382   val goals_lhs = map2 apply_trm_pair alphas (args1 ~~ args2)
   381     val goals_lhs = map2 apply_trm_pair alphas (args1 ~~ args2)
   383 
   382 
   384   val goals =
   383     val goals =
   385     (map2 (curry HOLogic.mk_imp) goals_lhs goals_rhs)
   384       (map2 (curry HOLogic.mk_imp) goals_lhs goals_rhs)
   386     |> foldr1 HOLogic.mk_conj
   385       |> foldr1 HOLogic.mk_conj
   387     |> HOLogic.mk_Trueprop
   386       |> HOLogic.mk_Trueprop
   388 
   387 
   389   fun tac ctxt =
   388     fun tac ctxt =
   390    HEADGOAL 
   389       HEADGOAL 
   391      (DETERM o (rtac alpha_induct_thm) 
   390         (DETERM o (rtac alpha_induct_thm) 
   392       THEN_ALL_NEW FIRST' [rtac @{thm TrueI}, cases_tac ctxt])
   391          THEN_ALL_NEW FIRST' [rtac @{thm TrueI}, cases_tac ctxt])
   393 in
   392   in
   394   Goal.prove ctxt' [] [] goals (fn {context, ...} => tac context)
   393     Goal.prove ctxt' [] [] goals (fn {context, ...} => tac context)
   395   |> singleton (ProofContext.export ctxt' ctxt)
   394     |> singleton (ProofContext.export ctxt' ctxt)
   396   |> Datatype_Aux.split_conj_thm
   395     |> Datatype_Aux.split_conj_thm
   397   |> map (fn th => th RS mp) 
   396     |> map (fn th => th RS mp) 
   398   |> map Datatype_Aux.split_conj_thm
   397     |> map Datatype_Aux.split_conj_thm
   399   |> flat
   398     |> flat
   400   |> map zero_var_indexes
   399     |> map zero_var_indexes
   401   |> filter_out (is_true o concl_of)
   400     |> filter_out (is_true o concl_of)
   402 end
   401   end
   403 
   402 
   404 
   403 
   405 (** reflexivity proof for the alphas **)
   404 (** reflexivity proof for the alphas **)
   406 
   405 
   407 val exi_zero = @{lemma "P (0::perm) ==> (? x. P x)" by auto}
   406 val exi_zero = @{lemma "P (0::perm) ==> (? x. P x)" by auto}
   408 
   407 
   409 fun cases_tac intros =
   408 fun cases_tac intros =
   410 let
   409   let
   411   val prod_simps = @{thms split_conv prod_alpha_def prod_rel.simps}
   410     val prod_simps = @{thms split_conv prod_alpha_def prod_rel.simps}
   412 
   411 
   413   val unbound_tac = REPEAT o (etac @{thm conjE}) THEN' atac  
   412     val unbound_tac = REPEAT o (etac @{thm conjE}) THEN' atac  
   414 
   413 
   415   val bound_tac = 
   414     val bound_tac = 
   416     EVERY' [ rtac exi_zero, 
   415       EVERY' [ rtac exi_zero, 
   417              resolve_tac @{thms alpha_refl}, 
   416                resolve_tac @{thms alpha_refl}, 
   418              asm_full_simp_tac (HOL_ss addsimps prod_simps) ]
   417                asm_full_simp_tac (HOL_ss addsimps prod_simps) ]
   419 in
   418   in
   420   REPEAT o FIRST' [rtac @{thm conjI}, 
   419     REPEAT o FIRST' [rtac @{thm conjI}, 
   421     resolve_tac intros THEN_ALL_NEW FIRST' [rtac @{thm refl}, unbound_tac, bound_tac]]
   420       resolve_tac intros THEN_ALL_NEW FIRST' [rtac @{thm refl}, unbound_tac, bound_tac]]
   422 end
   421   end
   423 
   422 
   424 fun raw_prove_refl alpha_trms alpha_bns alpha_intros raw_dt_induct ctxt =
   423 fun raw_prove_refl alpha_trms alpha_bns alpha_intros raw_dt_induct ctxt =
   425 let
   424   let
   426   val arg_tys = 
   425     val arg_tys = 
   427     alpha_trms
   426       alpha_trms
   428     |> map fastype_of
   427       |> map fastype_of
   429     |> map domain_type
   428       |> map domain_type
   430   val arg_bn_tys = 
   429     val arg_bn_tys = 
   431     alpha_bns
   430       alpha_bns
   432     |> map fastype_of
   431       |> map fastype_of
   433     |> map domain_type
   432       |> map domain_type
   434   val arg_names = Datatype_Prop.make_tnames arg_tys
   433     val arg_names = Datatype_Prop.make_tnames arg_tys
   435   val arg_bn_names = map (lookup (arg_tys ~~ arg_names)) arg_bn_tys
   434     val arg_bn_names = map (lookup (arg_tys ~~ arg_names)) arg_bn_tys
   436   val args = map Free (arg_names ~~ arg_tys)
   435     val args = map Free (arg_names ~~ arg_tys)
   437   val arg_bns = map Free (arg_bn_names ~~ arg_bn_tys)
   436     val arg_bns = map Free (arg_bn_names ~~ arg_bn_tys)
   438   val goal = 
   437     val goal = 
   439     group ((arg_bns ~~ alpha_bns) @ (args ~~ alpha_trms))
   438       group ((arg_bns ~~ alpha_bns) @ (args ~~ alpha_trms))
   440     |> map (fn (ar, cnsts) => map (fn c => c $ ar $ ar) cnsts) 
   439       |> map (fn (ar, cnsts) => map (fn c => c $ ar $ ar) cnsts) 
   441     |> map (foldr1 HOLogic.mk_conj)
   440       |> map (foldr1 HOLogic.mk_conj)
   442     |> foldr1 HOLogic.mk_conj
   441       |> foldr1 HOLogic.mk_conj
   443     |> HOLogic.mk_Trueprop
   442       |> HOLogic.mk_Trueprop
   444 in
   443   in
   445   Goal.prove ctxt arg_names [] goal
   444     Goal.prove ctxt arg_names [] goal
   446     (fn {context, ...} => 
   445       (fn {context, ...} => 
   447        HEADGOAL (DETERM o (rtac raw_dt_induct) THEN_ALL_NEW cases_tac alpha_intros)) 
   446          HEADGOAL (DETERM o (rtac raw_dt_induct) THEN_ALL_NEW cases_tac alpha_intros)) 
   448   |> Datatype_Aux.split_conj_thm 
   447     |> Datatype_Aux.split_conj_thm 
   449   |> map Datatype_Aux.split_conj_thm 
   448     |> map Datatype_Aux.split_conj_thm 
   450   |> flat
   449     |> flat
   451 end
   450   end
   452 
   451 
   453 
   452 
   454 
   453 
   455 (** symmetry proof for the alphas **)
   454 (** symmetry proof for the alphas **)
   456 
   455 
   457 val exi_neg = @{lemma "(EX (p::perm). P p) ==> (!!q. P q ==> Q (- q)) ==> EX p. Q p"
   456 val exi_neg = @{lemma "(EX (p::perm). P p) ==> (!!q. P q ==> Q (- q)) ==> EX p. Q p"
   458   by (erule exE, rule_tac x="-p" in exI, auto)}
   457   by (erule exE, rule_tac x="-p" in exI, auto)}
   459 
   458 
   460 (* for premises that contain binders *)
   459 (* for premises that contain binders *)
   461 fun prem_bound_tac pred_names ctxt = 
   460 fun prem_bound_tac pred_names ctxt = 
   462 let
   461   let
   463   fun trans_prem_tac pred_names ctxt = 
   462     fun trans_prem_tac pred_names ctxt = 
   464     SUBPROOF (fn {prems, context, ...} => 
   463       SUBPROOF (fn {prems, context, ...} => 
   465     let
   464         let
   466       val prems' = map (transform_prem1 context pred_names) prems
   465           val prems' = map (transform_prem1 context pred_names) prems
   467     in
   466         in
   468       resolve_tac prems' 1
   467           resolve_tac prems' 1
   469     end) ctxt
   468         end) ctxt
   470   val prod_simps = @{thms split_conv permute_prod.simps prod_alpha_def prod_rel.simps alphas}
   469     val prod_simps = @{thms split_conv permute_prod.simps prod_alpha_def prod_rel.simps alphas}
   471 in
   470   in
   472   EVERY' 
   471     EVERY' 
   473     [ etac exi_neg,
   472       [ etac exi_neg,
   474       resolve_tac @{thms alpha_sym_eqvt},
   473         resolve_tac @{thms alpha_sym_eqvt},
   475       asm_full_simp_tac (HOL_ss addsimps prod_simps),
   474         asm_full_simp_tac (HOL_ss addsimps prod_simps),
   476       Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
   475         Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
   477       trans_prem_tac pred_names ctxt ] 
   476         trans_prem_tac pred_names ctxt ] 
   478 end
   477   end
   479 
   478 
   480 fun raw_prove_sym alpha_trms alpha_intros alpha_induct ctxt =
   479 fun raw_prove_sym alpha_trms alpha_intros alpha_induct ctxt =
   481 let
   480   let
   482   val props = map (fn t => fn (x, y) => t $ y $ x) alpha_trms
   481     val props = map (fn t => fn (x, y) => t $ y $ x) alpha_trms
   483   
   482   
   484   fun tac ctxt = 
   483     fun tac ctxt = 
   485     let
   484       let
   486       val alpha_names =  map (fst o dest_Const) alpha_trms   
   485         val alpha_names =  map (fst o dest_Const) alpha_trms   
   487     in
   486       in
   488       resolve_tac alpha_intros THEN_ALL_NEW 
   487         resolve_tac alpha_intros THEN_ALL_NEW 
   489       FIRST' [atac, rtac @{thm sym} THEN' atac, prem_bound_tac alpha_names ctxt]
   488         FIRST' [atac, rtac @{thm sym} THEN' atac, prem_bound_tac alpha_names ctxt]
   490   end
   489     end
   491 in
   490   in
   492   alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct tac ctxt 
   491     alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct tac ctxt 
   493 end
   492   end
   494 
   493 
   495 
   494 
   496 (** transitivity proof for alphas **)
   495 (** transitivity proof for alphas **)
   497 
   496 
   498 (* applies cases rules and resolves them with the last premise *)
   497 (* applies cases rules and resolves them with the last premise *)
   514     in
   513     in
   515       HEADGOAL (rtac exi_inst)
   514       HEADGOAL (rtac exi_inst)
   516     end)
   515     end)
   517 
   516 
   518 fun non_trivial_cases_tac pred_names intros ctxt = 
   517 fun non_trivial_cases_tac pred_names intros ctxt = 
   519 let
   518   let
   520   val prod_simps = @{thms split_conv alphas permute_prod.simps prod_alpha_def prod_rel.simps}
   519     val prod_simps = @{thms split_conv alphas permute_prod.simps prod_alpha_def prod_rel.simps}
   521 in
   520   in
   522   resolve_tac intros
   521     resolve_tac intros
   523   THEN_ALL_NEW (asm_simp_tac HOL_basic_ss THEN' 
   522     THEN_ALL_NEW (asm_simp_tac HOL_basic_ss THEN' 
   524     TRY o EVERY'   (* if binders are present *)
   523       TRY o EVERY'   (* if binders are present *)
   525       [ etac @{thm exE},
   524         [ etac @{thm exE},
   526         etac @{thm exE},
   525           etac @{thm exE},
   527         perm_inst_tac ctxt, 
   526           perm_inst_tac ctxt, 
   528         resolve_tac @{thms alpha_trans_eqvt}, 
   527           resolve_tac @{thms alpha_trans_eqvt}, 
   529         atac,
   528           atac,
   530         aatac pred_names ctxt, 
   529           aatac pred_names ctxt, 
   531         Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
   530           Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
   532         asm_full_simp_tac (HOL_ss addsimps prod_simps) ])
   531           asm_full_simp_tac (HOL_ss addsimps prod_simps) ])
   533 end
   532   end
   534 			  
   533 			  
   535 fun prove_trans_tac pred_names raw_dt_thms intros cases ctxt =
   534 fun prove_trans_tac pred_names raw_dt_thms intros cases ctxt =
   536 let
   535   let
   537   fun all_cases ctxt = 
   536     fun all_cases ctxt = 
   538     asm_full_simp_tac (HOL_basic_ss addsimps raw_dt_thms) 
   537       asm_full_simp_tac (HOL_basic_ss addsimps raw_dt_thms) 
   539     THEN' TRY o non_trivial_cases_tac pred_names intros ctxt
   538       THEN' TRY o non_trivial_cases_tac pred_names intros ctxt
   540 in
   539   in
   541   EVERY' [ rtac @{thm allI}, rtac @{thm impI}, 
   540     EVERY' [ rtac @{thm allI}, rtac @{thm impI}, 
   542            ecases_tac cases ctxt THEN_ALL_NEW all_cases ctxt ]
   541              ecases_tac cases ctxt THEN_ALL_NEW all_cases ctxt ]
   543 end
   542   end
   544 
   543 
   545 fun prep_trans_goal alpha_trm (arg1, arg2) =
   544 fun prep_trans_goal alpha_trm (arg1, arg2) =
   546 let
   545   let
   547   val arg_ty = fastype_of arg1
   546     val arg_ty = fastype_of arg1
   548   val mid = alpha_trm $ arg2 $ (Bound 0)
   547     val mid = alpha_trm $ arg2 $ (Bound 0)
   549   val rhs = alpha_trm $ arg1 $ (Bound 0) 
   548     val rhs = alpha_trm $ arg1 $ (Bound 0) 
   550 in
   549   in
   551   HOLogic.all_const arg_ty $ Abs ("z", arg_ty, HOLogic.mk_imp (mid, rhs))
   550     HOLogic.all_const arg_ty $ Abs ("z", arg_ty, HOLogic.mk_imp (mid, rhs))
   552 end
   551   end
   553 
   552 
   554 fun raw_prove_trans alpha_trms raw_dt_thms alpha_intros alpha_induct alpha_cases ctxt =
   553 fun raw_prove_trans alpha_trms raw_dt_thms alpha_intros alpha_induct alpha_cases ctxt =
   555 let
   554   let
   556   val alpha_names =  map (fst o dest_Const) alpha_trms 
   555     val alpha_names =  map (fst o dest_Const) alpha_trms 
   557   val props = map prep_trans_goal alpha_trms
   556     val props = map prep_trans_goal alpha_trms
   558   val norm = @{lemma "A ==> (!x. B x --> C x) ==> (!!x. [|A; B x|] ==> C x)" by simp}  
   557     val norm = @{lemma "A ==> (!x. B x --> C x) ==> (!!x. [|A; B x|] ==> C x)" by simp}  
   559 in
   558   in
   560   alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct
   559     alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct
   561     (prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_cases) ctxt
   560       (prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_cases) ctxt
   562 end
   561   end
   563 
   562 
   564 
   563 
   565 (** proves the equivp predicate for all alphas **)
   564 (** proves the equivp predicate for all alphas **)
   566 
   565 
   567 val transp_def' =
   566 val transp_def' =
   568   @{lemma "transp R == !x y. R x y --> (!z. R y z --> R x z)" 
   567   @{lemma "transp R == !x y. R x y --> (!z. R y z --> R x z)" 
   569     by (rule eq_reflection, auto simp add: transp_def)}
   568     by (rule eq_reflection, auto simp add: transp_def)}
   570 
   569 
   571 fun raw_prove_equivp alphas alpha_bns refl symm trans ctxt = 
   570 fun raw_prove_equivp alphas alpha_bns refl symm trans ctxt = 
   572 let
   571   let
   573   val refl' = map (fold_rule @{thms reflp_def} o atomize) refl
   572     val refl' = map (fold_rule @{thms reflp_def} o atomize) refl
   574   val symm' = map (fold_rule @{thms symp_def} o atomize) symm
   573     val symm' = map (fold_rule @{thms symp_def} o atomize) symm
   575   val trans' = map (fold_rule [transp_def'] o atomize) trans
   574     val trans' = map (fold_rule [transp_def'] o atomize) trans
   576 
   575 
   577   fun prep_goal t = 
   576     fun prep_goal t = 
   578     HOLogic.mk_Trueprop (Const (@{const_name "equivp"}, fastype_of t --> @{typ bool}) $ t) 
   577       HOLogic.mk_Trueprop (Const (@{const_name "equivp"}, fastype_of t --> @{typ bool}) $ t) 
   579 in    
   578   in    
   580   Goal.prove_multi ctxt [] [] (map prep_goal (alphas @ alpha_bns))
   579     Goal.prove_multi ctxt [] [] (map prep_goal (alphas @ alpha_bns))
   581   (K (HEADGOAL (Goal.conjunction_tac THEN_ALL_NEW (rtac @{thm equivpI} THEN' 
   580     (K (HEADGOAL (Goal.conjunction_tac THEN_ALL_NEW (rtac @{thm equivpI} THEN' 
   582      RANGE [resolve_tac refl', resolve_tac symm', resolve_tac trans']))))
   581        RANGE [resolve_tac refl', resolve_tac symm', resolve_tac trans']))))
   583   |> chop (length alphas)
   582     |> chop (length alphas)
   584 end
   583   end
   585 
   584 
   586 
   585 
   587 (* proves that alpha_raw implies alpha_bn *)
   586 (* proves that alpha_raw implies alpha_bn *)
   588 
   587 
   589 fun raw_prove_bn_imp_tac pred_names alpha_intros ctxt = 
   588 fun raw_prove_bn_imp_tac pred_names alpha_intros ctxt = 
   600                      resolve_tac prems'',
   599                      resolve_tac prems'',
   601                      resolve_tac alpha_intros ]))
   600                      resolve_tac alpha_intros ]))
   602     end) ctxt
   601     end) ctxt
   603 
   602 
   604 fun raw_prove_bn_imp alpha_trms alpha_bn_trms alpha_intros alpha_induct ctxt =
   603 fun raw_prove_bn_imp alpha_trms alpha_bn_trms alpha_intros alpha_induct ctxt =
   605 let
   604   let
   606   val arg_ty = domain_type o fastype_of 
   605     val arg_ty = domain_type o fastype_of 
   607   val alpha_names =  map (fst o dest_Const) alpha_trms
   606     val alpha_names =  map (fst o dest_Const) alpha_trms
   608   val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
   607     val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
   609   val props = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => t $ x $ y)) alpha_bn_trms
   608     val props = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => t $ x $ y)) alpha_bn_trms
   610 in
   609   in
   611   alpha_prove (alpha_trms @ alpha_bn_trms) props alpha_induct 
   610     alpha_prove (alpha_trms @ alpha_bn_trms) props alpha_induct 
   612     (raw_prove_bn_imp_tac alpha_names alpha_intros) ctxt
   611       (raw_prove_bn_imp_tac alpha_names alpha_intros) ctxt
   613 end
   612   end
   614 
   613 
   615 
   614 
   616 (* respectfulness for fv_raw / bn_raw *)
   615 (* respectfulness for fv_raw / bn_raw *)
   617 
   616 
   618 fun raw_fv_bn_rsp_aux alpha_trms alpha_bn_trms fvs bns fv_bns alpha_induct simps ctxt =
   617 fun raw_fv_bn_rsp_aux alpha_trms alpha_bn_trms fvs bns fv_bns alpha_induct simps ctxt =
   619 let
   618   let
   620   val arg_ty = domain_type o fastype_of 
   619     val arg_ty = domain_type o fastype_of 
   621   val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
   620     val ty_assoc = map (fn t => (arg_ty t, t)) alpha_trms
   622   fun mk_eq' t x y = HOLogic.mk_eq (t $ x, t $ y)
   621     fun mk_eq' t x y = HOLogic.mk_eq (t $ x, t $ y)
   623 
   622 
   624   val prop1 = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => mk_eq' t x y)) fvs
   623     val prop1 = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => mk_eq' t x y)) fvs
   625   val prop2 = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => mk_eq' t x y)) (bns @ fv_bns)
   624     val prop2 = map (fn t => (lookup ty_assoc (arg_ty t), fn (x, y) => mk_eq' t x y)) (bns @ fv_bns)
   626   val prop3 = map2 (fn t1 => fn t2 => (t1, fn (x, y) => mk_eq' t2 x y)) alpha_bn_trms fv_bns
   625     val prop3 = map2 (fn t1 => fn t2 => (t1, fn (x, y) => mk_eq' t2 x y)) alpha_bn_trms fv_bns
   627   
   626   
   628   val ss = HOL_ss addsimps (simps @ @{thms alphas prod_fv.simps set.simps append.simps} 
   627     val ss = HOL_ss addsimps (simps @ @{thms alphas prod_fv.simps set.simps append.simps} 
   629     @ @{thms Un_assoc Un_insert_left Un_empty_right Un_empty_left}) 
   628       @ @{thms Un_assoc Un_insert_left Un_empty_right Un_empty_left}) 
   630 
   629 
   631 in
   630   in
   632   alpha_prove (alpha_trms @ alpha_bn_trms) (prop1 @ prop2 @ prop3) alpha_induct 
   631     alpha_prove (alpha_trms @ alpha_bn_trms) (prop1 @ prop2 @ prop3) alpha_induct 
   633     (K (asm_full_simp_tac ss)) ctxt
   632       (K (asm_full_simp_tac ss)) ctxt
   634 end
   633   end
   635 
   634 
   636 
   635 
   637 (* respectfulness for size *)
   636 (* respectfulness for size *)
   638 
   637 
   639 fun raw_size_rsp_aux all_alpha_trms alpha_induct simps ctxt =
   638 fun raw_size_rsp_aux all_alpha_trms alpha_induct simps ctxt =
   640 let
   639   let
   641   val arg_tys = map (domain_type o fastype_of) all_alpha_trms
   640     val arg_tys = map (domain_type o fastype_of) all_alpha_trms
   642 
   641 
   643   fun mk_prop ty (x, y) = HOLogic.mk_eq 
   642     fun mk_prop ty (x, y) = HOLogic.mk_eq 
   644     (HOLogic.size_const ty $ x, HOLogic.size_const ty $ y)
   643       (HOLogic.size_const ty $ x, HOLogic.size_const ty $ y)
   645 
   644 
   646   val props = map2 (fn trm => fn ty => (trm, mk_prop ty)) all_alpha_trms arg_tys 
   645     val props = map2 (fn trm => fn ty => (trm, mk_prop ty)) all_alpha_trms arg_tys 
   647   
   646   
   648   val ss = HOL_ss addsimps (simps @ @{thms alphas prod_alpha_def prod_rel.simps 
   647     val ss = HOL_ss addsimps (simps @ @{thms alphas prod_alpha_def prod_rel.simps 
   649     permute_prod_def prod.cases prod.recs})
   648       permute_prod_def prod.cases prod.recs})
   650 
   649 
   651   val tac = (TRY o REPEAT o etac @{thm exE}) THEN' asm_full_simp_tac ss
   650     val tac = (TRY o REPEAT o etac @{thm exE}) THEN' asm_full_simp_tac ss
   652 in
   651   in
   653   alpha_prove all_alpha_trms props alpha_induct (K tac) ctxt
   652     alpha_prove all_alpha_trms props alpha_induct (K tac) ctxt
   654 end
   653   end
   655 
   654 
   656 
   655 
   657 (* respectfulness for constructors *)
   656 (* respectfulness for constructors *)
   658 
   657 
   659 fun raw_constr_rsp_tac alpha_intros simps = 
   658 fun raw_constr_rsp_tac alpha_intros simps = 
   660 let
   659   let
   661   val pre_ss = HOL_ss addsimps @{thms fun_rel_def}
   660     val pre_ss = HOL_ss addsimps @{thms fun_rel_def}
   662   val post_ss = HOL_ss addsimps @{thms alphas prod_alpha_def prod_rel.simps 
   661     val post_ss = HOL_ss addsimps @{thms alphas prod_alpha_def prod_rel.simps 
   663     prod_fv.simps fresh_star_zero permute_zero prod.cases} @ simps
   662       prod_fv.simps fresh_star_zero permute_zero prod.cases} @ simps
   664   (* funs_rsp alpha_bn_simps *)
   663   in
   665 in
   664     asm_full_simp_tac pre_ss
   666   asm_full_simp_tac pre_ss
   665     THEN' REPEAT o (resolve_tac @{thms allI impI})
   667   THEN' REPEAT o (resolve_tac @{thms allI impI})
   666     THEN' resolve_tac alpha_intros
   668   THEN' resolve_tac alpha_intros
   667     THEN_ALL_NEW (TRY o (rtac exi_zero) THEN' asm_full_simp_tac post_ss)
   669   THEN_ALL_NEW (TRY o (rtac exi_zero) THEN' asm_full_simp_tac post_ss)
   668   end
   670 end
       
   671 
   669 
   672 
   670 
   673 fun raw_constrs_rsp constrs alpha_trms alpha_intros simps ctxt =
   671 fun raw_constrs_rsp constrs alpha_trms alpha_intros simps ctxt =
   674 let
   672   let
   675   val alpha_arg_tys = map (domain_type o fastype_of) alpha_trms
   673     val alpha_arg_tys = map (domain_type o fastype_of) alpha_trms
   676   
   674   
   677   fun lookup ty = 
   675     fun lookup ty = 
   678     case AList.lookup (op=) (alpha_arg_tys ~~ alpha_trms) ty of
   676       case AList.lookup (op=) (alpha_arg_tys ~~ alpha_trms) ty of
   679       NONE => HOLogic.eq_const ty
   677         NONE => HOLogic.eq_const ty
   680     | SOME alpha => alpha 
   678       | SOME alpha => alpha 
   681   
   679   
   682   fun fun_rel_app t1 t2 = 
   680     fun fun_rel_app t1 t2 = 
   683     Const (@{const_name "fun_rel"}, dummyT) $ t1 $ t2
   681       Const (@{const_name "fun_rel"}, dummyT) $ t1 $ t2
   684 
   682 
   685   fun prep_goal trm =
   683     fun prep_goal trm =
   686     trm
   684       trm
   687     |> strip_type o fastype_of
   685       |> strip_type o fastype_of
   688     |>> map lookup
   686       |>> map lookup
   689     ||> lookup
   687       ||> lookup
   690     |> uncurry (fold_rev fun_rel_app)
   688       |> uncurry (fold_rev fun_rel_app)
   691     |> (fn t => t $ trm $ trm)
   689       |> (fn t => t $ trm $ trm)
   692     |> Syntax.check_term ctxt
   690       |> Syntax.check_term ctxt
   693     |> HOLogic.mk_Trueprop
   691       |> HOLogic.mk_Trueprop
   694 in
   692   in
   695   Goal.prove_multi ctxt [] [] (map prep_goal constrs)
   693     Goal.prove_multi ctxt [] [] (map prep_goal constrs)
   696     (K (HEADGOAL 
   694       (K (HEADGOAL 
   697       (Goal.conjunction_tac THEN_ALL_NEW raw_constr_rsp_tac alpha_intros simps)))
   695         (Goal.conjunction_tac THEN_ALL_NEW raw_constr_rsp_tac alpha_intros simps)))
   698 end
   696   end
   699 
   697 
   700 
   698 
   701 (* rsp lemmas for alpha_bn relations *)
   699 (* rsp lemmas for alpha_bn relations *)
   702 
   700 
   703 val rsp_equivp =
   701 val rsp_equivp =
   706 
   704 
   707 
   705 
   708 (* we have to reorder the alpha_bn_imps theorems in order
   706 (* we have to reorder the alpha_bn_imps theorems in order
   709    to be in order with alpha_bn_trms *)
   707    to be in order with alpha_bn_trms *)
   710 fun raw_alpha_bn_rsp alpha_bn_trms alpha_bn_equivp alpha_bn_imps =
   708 fun raw_alpha_bn_rsp alpha_bn_trms alpha_bn_equivp alpha_bn_imps =
   711 let
   709   let
   712   fun mk_map thm =
   710     fun mk_map thm =
   713     thm |> `prop_of
   711       thm |> `prop_of
   714         |>> List.last  o snd o strip_comb
   712           |>> List.last  o snd o strip_comb
   715         |>> HOLogic.dest_Trueprop
   713           |>> HOLogic.dest_Trueprop
   716         |>> head_of
   714           |>> head_of
   717         |>> fst o dest_Const
   715           |>> fst o dest_Const
   718 
   716 
   719   val alpha_bn_imps' = 
   717     val alpha_bn_imps' = 
   720     map (lookup (map mk_map alpha_bn_imps) o fst o dest_Const) alpha_bn_trms
   718       map (lookup (map mk_map alpha_bn_imps) o fst o dest_Const) alpha_bn_trms
   721 
   719 
   722   fun mk_thm thm1 thm2 = 
   720     fun mk_thm thm1 thm2 = 
   723     (forall_intr_vars thm2) COMP (thm1 RS rsp_equivp)
   721       (forall_intr_vars thm2) COMP (thm1 RS rsp_equivp)
   724 in
   722   in
   725   map2 mk_thm alpha_bn_equivp alpha_bn_imps'
   723     map2 mk_thm alpha_bn_equivp alpha_bn_imps'
   726 end
   724   end
   727 
   725 
   728 
   726 
   729 (* transformation of the natural rsp-lemmas into standard form *)
   727 (* transformation of the natural rsp-lemmas into standard form *)
   730 
   728 
   731 val fun_rsp = @{lemma
   729 val fun_rsp = @{lemma
   732   "(!x y. R x y --> f x = f y) ==> (R ===> (op =)) f f" by simp}
   730   "(!x y. R x y --> f x = f y) ==> (R ===> (op =)) f f" by simp}
   733 
   731 
   734 fun mk_funs_rsp thm = 
   732 fun mk_funs_rsp thm = 
   735  thm
   733   thm
   736  |> atomize
   734   |> atomize
   737  |> single
   735   |> single
   738  |> curry (op OF) fun_rsp
   736   |> curry (op OF) fun_rsp
   739 
   737 
   740 
   738 
   741 val permute_rsp = @{lemma 
   739 val permute_rsp = @{lemma 
   742   "(!x y p. R x y --> R (permute p x) (permute p y)) 
   740   "(!x y p. R x y --> R (permute p x) (permute p y)) 
   743      ==> ((op =) ===> R ===> R) permute permute"  by simp}
   741      ==> ((op =) ===> R ===> R) permute permute"  by simp}
   744 
   742 
   745 fun mk_alpha_permute_rsp thm = 
   743 fun mk_alpha_permute_rsp thm = 
   746  thm
   744   thm
   747  |> atomize
   745   |> atomize
   748  |> single
   746   |> single
   749  |> curry (op OF) permute_rsp
   747   |> curry (op OF) permute_rsp
   750 
   748 
   751 
   749 
   752 
   750 
   753 
   751 
   754 end (* structure *)
   752 end (* structure *)