equal
deleted
inserted
replaced
466 then show "p \<bullet> x = x" using eq by simp |
466 then show "p \<bullet> x = x" using eq by simp |
467 qed |
467 qed |
468 |
468 |
469 section {* at_set_avoiding2 *} |
469 section {* at_set_avoiding2 *} |
470 |
470 |
471 lemma at_set_avoiding2 |
471 lemma at_set_avoiding2: |
472 assumes "finite xs" |
472 assumes "finite xs" |
473 and "finite (supp c)" "finite (supp x)" |
473 and "finite (supp c)" "finite (supp x)" |
474 and "xs \<sharp>* x" |
474 and "xs \<sharp>* x" |
475 shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p" |
475 shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p" |
476 using assms |
476 using assms |