Nominal/Nominal2_Supp.thy
changeset 1567 8f28e749d92b
parent 1564 a4743b7cd887
child 1633 9e31248a1b8c
equal deleted inserted replaced
1566:2facd6645599 1567:8f28e749d92b
   466   then show "p \<bullet> x = x" using eq by simp
   466   then show "p \<bullet> x = x" using eq by simp
   467 qed
   467 qed
   468 
   468 
   469 section {* at_set_avoiding2 *}
   469 section {* at_set_avoiding2 *}
   470 
   470 
   471 lemma at_set_avoiding2
   471 lemma at_set_avoiding2:
   472   assumes "finite xs"
   472   assumes "finite xs"
   473   and     "finite (supp c)" "finite (supp x)"
   473   and     "finite (supp c)" "finite (supp x)"
   474   and     "xs \<sharp>* x"
   474   and     "xs \<sharp>* x"
   475   shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p"
   475   shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p"
   476 using assms
   476 using assms