|
1 theory ExTySch |
|
2 imports "Parser" |
|
3 begin |
|
4 |
|
5 (* Type Schemes *) |
|
6 atom_decl name |
|
7 |
|
8 nominal_datatype t = |
|
9 Var "name" |
|
10 | Fun "t" "t" |
|
11 and tyS = |
|
12 All xs::"name fset" ty::"t" bind xs in ty |
|
13 |
|
14 lemma size_eqvt_raw: |
|
15 "size (pi \<bullet> t :: t_raw) = size t" |
|
16 "size (pi \<bullet> ts :: tyS_raw) = size ts" |
|
17 apply (induct rule: t_raw_tyS_raw.inducts) |
|
18 apply simp_all |
|
19 done |
|
20 |
|
21 instantiation t and tyS :: size begin |
|
22 |
|
23 quotient_definition |
|
24 "size_t :: t \<Rightarrow> nat" |
|
25 is |
|
26 "size :: t_raw \<Rightarrow> nat" |
|
27 |
|
28 quotient_definition |
|
29 "size_tyS :: tyS \<Rightarrow> nat" |
|
30 is |
|
31 "size :: tyS_raw \<Rightarrow> nat" |
|
32 |
|
33 lemma size_rsp: |
|
34 "alpha_t_raw x y \<Longrightarrow> size x = size y" |
|
35 "alpha_tyS_raw a b \<Longrightarrow> size a = size b" |
|
36 apply (induct rule: alpha_t_raw_alpha_tyS_raw.inducts) |
|
37 apply (simp_all only: t_raw_tyS_raw.size) |
|
38 apply (simp_all only: alpha_gen) |
|
39 apply clarify |
|
40 apply (simp_all only: size_eqvt_raw) |
|
41 done |
|
42 |
|
43 lemma [quot_respect]: |
|
44 "(alpha_t_raw ===> op =) size size" |
|
45 "(alpha_tyS_raw ===> op =) size size" |
|
46 by (simp_all add: size_rsp) |
|
47 |
|
48 lemma [quot_preserve]: |
|
49 "(rep_t ---> id) size = size" |
|
50 "(rep_tyS ---> id) size = size" |
|
51 by (simp_all add: size_t_def size_tyS_def) |
|
52 |
|
53 instance |
|
54 by default |
|
55 |
|
56 end |
|
57 |
|
58 thm t_raw_tyS_raw.size(4)[quot_lifted] |
|
59 thm t_raw_tyS_raw.size(5)[quot_lifted] |
|
60 thm t_raw_tyS_raw.size(6)[quot_lifted] |
|
61 |
|
62 |
|
63 thm t_tyS.fv |
|
64 thm t_tyS.eq_iff |
|
65 thm t_tyS.bn |
|
66 thm t_tyS.perm |
|
67 thm t_tyS.inducts |
|
68 thm t_tyS.distinct |
|
69 ML {* Sign.of_sort @{theory} (@{typ t}, @{sort fs}) *} |
|
70 |
|
71 lemmas t_tyS_supp = t_tyS.fv[simplified t_tyS.supp] |
|
72 |
|
73 lemma induct: |
|
74 assumes a1: "\<And>name b. P b (Var name)" |
|
75 and a2: "\<And>t1 t2 b. \<lbrakk>\<And>c. P c t1; \<And>c. P c t2\<rbrakk> \<Longrightarrow> P b (Fun t1 t2)" |
|
76 and a3: "\<And>fset t b. \<lbrakk>\<And>c. P c t; fset_to_set (fmap atom fset) \<sharp>* b\<rbrakk> \<Longrightarrow> P' b (All fset t)" |
|
77 shows "P (a :: 'a :: pt) t \<and> P' (d :: 'b :: {fs}) ts " |
|
78 proof - |
|
79 have " (\<forall>p a. P a (p \<bullet> t)) \<and> (\<forall>p d. P' d (p \<bullet> ts))" |
|
80 apply (rule t_tyS.induct) |
|
81 apply (simp add: a1) |
|
82 apply (simp) |
|
83 apply (rule allI)+ |
|
84 apply (rule a2) |
|
85 apply simp |
|
86 apply simp |
|
87 apply (rule allI) |
|
88 apply (rule allI) |
|
89 apply(subgoal_tac "\<exists>pa. ((pa \<bullet> (fset_to_set (fmap atom (p \<bullet> fset)))) \<sharp>* d \<and> supp (p \<bullet> TySch.All fset t) \<sharp>* pa)") |
|
90 apply clarify |
|
91 apply(rule_tac t="p \<bullet> TySch.All fset t" and |
|
92 s="pa \<bullet> (p \<bullet> TySch.All fset t)" in subst) |
|
93 apply (rule supp_perm_eq) |
|
94 apply assumption |
|
95 apply (simp only: t_tyS.perm) |
|
96 apply (rule a3) |
|
97 apply(erule_tac x="(pa + p)" in allE) |
|
98 apply simp |
|
99 apply (simp add: eqvts eqvts_raw) |
|
100 apply (rule at_set_avoiding2) |
|
101 apply (simp add: fin_fset_to_set) |
|
102 apply (simp add: finite_supp) |
|
103 apply (simp add: eqvts finite_supp) |
|
104 apply (subst atom_eqvt_raw[symmetric]) |
|
105 apply (subst fmap_eqvt[symmetric]) |
|
106 apply (subst fset_to_set_eqvt[symmetric]) |
|
107 apply (simp only: fresh_star_permute_iff) |
|
108 apply (simp add: fresh_star_def) |
|
109 apply clarify |
|
110 apply (simp add: fresh_def) |
|
111 apply (simp add: t_tyS_supp) |
|
112 done |
|
113 then have "P a (0 \<bullet> t) \<and> P' d (0 \<bullet> ts)" by blast |
|
114 then show ?thesis by simp |
|
115 qed |
|
116 |
|
117 lemma |
|
118 shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|b, a|} (Fun (Var a) (Var b))" |
|
119 apply(simp add: t_tyS.eq_iff) |
|
120 apply(rule_tac x="0::perm" in exI) |
|
121 apply(simp add: alpha_gen) |
|
122 apply(auto) |
|
123 apply(simp add: fresh_star_def fresh_zero_perm) |
|
124 done |
|
125 |
|
126 lemma |
|
127 shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var b) (Var a))" |
|
128 apply(simp add: t_tyS.eq_iff) |
|
129 apply(rule_tac x="(atom a \<rightleftharpoons> atom b)" in exI) |
|
130 apply(simp add: alpha_gen fresh_star_def eqvts) |
|
131 apply auto |
|
132 done |
|
133 |
|
134 lemma |
|
135 shows "All {|a, b, c|} (Fun (Var a) (Var b)) = All {|a, b|} (Fun (Var a) (Var b))" |
|
136 apply(simp add: t_tyS.eq_iff) |
|
137 apply(rule_tac x="0::perm" in exI) |
|
138 apply(simp add: alpha_gen fresh_star_def eqvts t_tyS.eq_iff) |
|
139 oops |
|
140 |
|
141 lemma |
|
142 assumes a: "a \<noteq> b" |
|
143 shows "\<not>(All {|a, b|} (Fun (Var a) (Var b)) = All {|c|} (Fun (Var c) (Var c)))" |
|
144 using a |
|
145 apply(simp add: t_tyS.eq_iff) |
|
146 apply(clarify) |
|
147 apply(simp add: alpha_gen fresh_star_def eqvts t_tyS.eq_iff) |
|
148 apply auto |
|
149 done |
|
150 |
|
151 (* PROBLEM: |
|
152 Type schemes with separate datatypes |
|
153 |
|
154 nominal_datatype T = |
|
155 TVar "name" |
|
156 | TFun "T" "T" |
|
157 nominal_datatype TyS = |
|
158 TAll xs::"name list" ty::"T" bind xs in ty |
|
159 |
|
160 *** exception Datatype raised |
|
161 *** (line 218 of "/usr/local/src/Isabelle_16-Mar-2010/src/HOL/Tools/Datatype/datatype_aux.ML") |
|
162 *** At command "nominal_datatype". |
|
163 *) |
|
164 |
|
165 |
|
166 end |