|
1 theory QuotScript |
|
2 imports Plain ATP_Linkup |
|
3 begin |
|
4 |
|
5 definition |
|
6 "equivp E \<equiv> \<forall>x y. E x y = (E x = E y)" |
|
7 |
|
8 definition |
|
9 "reflp E \<equiv> \<forall>x. E x x" |
|
10 |
|
11 definition |
|
12 "symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x" |
|
13 |
|
14 definition |
|
15 "transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z" |
|
16 |
|
17 lemma equivp_reflp_symp_transp: |
|
18 shows "equivp E = (reflp E \<and> symp E \<and> transp E)" |
|
19 unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq |
|
20 by (blast) |
|
21 |
|
22 lemma equivp_reflp: |
|
23 shows "equivp E \<Longrightarrow> (\<And>x. E x x)" |
|
24 by (simp only: equivp_reflp_symp_transp reflp_def) |
|
25 |
|
26 lemma equivp_symp: |
|
27 shows "equivp E \<Longrightarrow> (\<And>x y. E x y \<Longrightarrow> E y x)" |
|
28 by (metis equivp_reflp_symp_transp symp_def) |
|
29 |
|
30 lemma equivp_transp: |
|
31 shows "equivp E \<Longrightarrow> (\<And>x y z. E x y \<Longrightarrow> E y z \<Longrightarrow> E x z)" |
|
32 by (metis equivp_reflp_symp_transp transp_def) |
|
33 |
|
34 definition |
|
35 "part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))" |
|
36 |
|
37 lemma equivp_IMP_part_equivp: |
|
38 assumes a: "equivp E" |
|
39 shows "part_equivp E" |
|
40 using a unfolding equivp_def part_equivp_def |
|
41 by auto |
|
42 |
|
43 definition |
|
44 "Quotient E Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and> |
|
45 (\<forall>a. E (Rep a) (Rep a)) \<and> |
|
46 (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))" |
|
47 |
|
48 lemma Quotient_abs_rep: |
|
49 assumes a: "Quotient E Abs Rep" |
|
50 shows "Abs (Rep a) \<equiv> a" |
|
51 using a unfolding Quotient_def |
|
52 by simp |
|
53 |
|
54 lemma Quotient_rep_reflp: |
|
55 assumes a: "Quotient E Abs Rep" |
|
56 shows "E (Rep a) (Rep a)" |
|
57 using a unfolding Quotient_def |
|
58 by blast |
|
59 |
|
60 lemma Quotient_rel: |
|
61 assumes a: "Quotient E Abs Rep" |
|
62 shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))" |
|
63 using a unfolding Quotient_def |
|
64 by blast |
|
65 |
|
66 lemma Quotient_rel_rep: |
|
67 assumes a: "Quotient R Abs Rep" |
|
68 shows "R (Rep a) (Rep b) \<equiv> (a = b)" |
|
69 apply (rule eq_reflection) |
|
70 using a unfolding Quotient_def |
|
71 by metis |
|
72 |
|
73 lemma Quotient_rep_abs: |
|
74 assumes a: "Quotient R Abs Rep" |
|
75 shows "R r r \<Longrightarrow> R (Rep (Abs r)) r" |
|
76 using a unfolding Quotient_def |
|
77 by blast |
|
78 |
|
79 lemma identity_equivp: |
|
80 shows "equivp (op =)" |
|
81 unfolding equivp_def |
|
82 by auto |
|
83 |
|
84 lemma identity_quotient: |
|
85 shows "Quotient (op =) id id" |
|
86 unfolding Quotient_def id_def |
|
87 by blast |
|
88 |
|
89 lemma Quotient_symp: |
|
90 assumes a: "Quotient E Abs Rep" |
|
91 shows "symp E" |
|
92 using a unfolding Quotient_def symp_def |
|
93 by metis |
|
94 |
|
95 lemma Quotient_transp: |
|
96 assumes a: "Quotient E Abs Rep" |
|
97 shows "transp E" |
|
98 using a unfolding Quotient_def transp_def |
|
99 by metis |
|
100 |
|
101 fun |
|
102 fun_map |
|
103 where |
|
104 "fun_map f g h x = g (h (f x))" |
|
105 |
|
106 abbreviation |
|
107 fun_map_syn (infixr "--->" 55) |
|
108 where |
|
109 "f ---> g \<equiv> fun_map f g" |
|
110 |
|
111 lemma fun_map_id: |
|
112 shows "(id ---> id) = id" |
|
113 by (simp add: expand_fun_eq id_def) |
|
114 |
|
115 fun |
|
116 fun_rel |
|
117 where |
|
118 "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))" |
|
119 |
|
120 abbreviation |
|
121 fun_rel_syn (infixr "===>" 55) |
|
122 where |
|
123 "E1 ===> E2 \<equiv> fun_rel E1 E2" |
|
124 |
|
125 lemma fun_rel_eq: |
|
126 "(op =) ===> (op =) \<equiv> (op =)" |
|
127 by (rule eq_reflection) (simp add: expand_fun_eq) |
|
128 |
|
129 lemma fun_quotient: |
|
130 assumes q1: "Quotient R1 abs1 rep1" |
|
131 and q2: "Quotient R2 abs2 rep2" |
|
132 shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" |
|
133 proof - |
|
134 have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a" |
|
135 apply(simp add: expand_fun_eq) |
|
136 using q1 q2 |
|
137 apply(simp add: Quotient_def) |
|
138 done |
|
139 moreover |
|
140 have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)" |
|
141 apply(auto) |
|
142 using q1 q2 unfolding Quotient_def |
|
143 apply(metis) |
|
144 done |
|
145 moreover |
|
146 have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> |
|
147 (rep1 ---> abs2) r = (rep1 ---> abs2) s)" |
|
148 apply(auto simp add: expand_fun_eq) |
|
149 using q1 q2 unfolding Quotient_def |
|
150 apply(metis) |
|
151 using q1 q2 unfolding Quotient_def |
|
152 apply(metis) |
|
153 using q1 q2 unfolding Quotient_def |
|
154 apply(metis) |
|
155 using q1 q2 unfolding Quotient_def |
|
156 apply(metis) |
|
157 done |
|
158 ultimately |
|
159 show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" |
|
160 unfolding Quotient_def by blast |
|
161 qed |
|
162 |
|
163 definition |
|
164 Respects |
|
165 where |
|
166 "Respects R x \<equiv> (R x x)" |
|
167 |
|
168 lemma in_respects: |
|
169 shows "(x \<in> Respects R) = R x x" |
|
170 unfolding mem_def Respects_def by simp |
|
171 |
|
172 lemma equals_rsp: |
|
173 assumes q: "Quotient R Abs Rep" |
|
174 and a: "R xa xb" "R ya yb" |
|
175 shows "R xa ya = R xb yb" |
|
176 using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def |
|
177 using a by blast |
|
178 |
|
179 lemma lambda_prs: |
|
180 assumes q1: "Quotient R1 Abs1 Rep1" |
|
181 and q2: "Quotient R2 Abs2 Rep2" |
|
182 shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)" |
|
183 unfolding expand_fun_eq |
|
184 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] |
|
185 by simp |
|
186 |
|
187 lemma lambda_prs1: |
|
188 assumes q1: "Quotient R1 Abs1 Rep1" |
|
189 and q2: "Quotient R2 Abs2 Rep2" |
|
190 shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)" |
|
191 unfolding expand_fun_eq |
|
192 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] |
|
193 by simp |
|
194 |
|
195 lemma rep_abs_rsp: |
|
196 assumes q: "Quotient R Abs Rep" |
|
197 and a: "R x1 x2" |
|
198 shows "R x1 (Rep (Abs x2))" |
|
199 using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]) |
|
200 |
|
201 (* In the following theorem R1 can be instantiated with anything, |
|
202 but we know some of the types of the Rep and Abs functions; |
|
203 so by solving Quotient assumptions we can get a unique R1 that |
|
204 will be provable; which is why we need to use apply_rsp and |
|
205 not the primed version *) |
|
206 lemma apply_rsp: |
|
207 assumes q: "Quotient R1 Abs1 Rep1" |
|
208 and a: "(R1 ===> R2) f g" "R1 x y" |
|
209 shows "R2 ((f::'a\<Rightarrow>'c) x) ((g::'a\<Rightarrow>'c) y)" |
|
210 using a by simp |
|
211 |
|
212 lemma apply_rsp': |
|
213 assumes a: "(R1 ===> R2) f g" "R1 x y" |
|
214 shows "R2 (f x) (g y)" |
|
215 using a by simp |
|
216 |
|
217 (* Set of lemmas for regularisation of ball and bex *) |
|
218 |
|
219 lemma ball_reg_eqv: |
|
220 fixes P :: "'a \<Rightarrow> bool" |
|
221 assumes a: "equivp R" |
|
222 shows "Ball (Respects R) P = (All P)" |
|
223 by (metis equivp_def in_respects a) |
|
224 |
|
225 lemma bex_reg_eqv: |
|
226 fixes P :: "'a \<Rightarrow> bool" |
|
227 assumes a: "equivp R" |
|
228 shows "Bex (Respects R) P = (Ex P)" |
|
229 by (metis equivp_def in_respects a) |
|
230 |
|
231 lemma ball_reg_right: |
|
232 assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x" |
|
233 shows "All P \<longrightarrow> Ball R Q" |
|
234 by (metis COMBC_def Collect_def Collect_mem_eq a) |
|
235 |
|
236 lemma bex_reg_left: |
|
237 assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x" |
|
238 shows "Bex R Q \<longrightarrow> Ex P" |
|
239 by (metis COMBC_def Collect_def Collect_mem_eq a) |
|
240 |
|
241 lemma ball_reg_left: |
|
242 assumes a: "equivp R" |
|
243 shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P" |
|
244 by (metis equivp_reflp in_respects a) |
|
245 |
|
246 lemma bex_reg_right: |
|
247 assumes a: "equivp R" |
|
248 shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P" |
|
249 by (metis equivp_reflp in_respects a) |
|
250 |
|
251 lemma ball_reg_eqv_range: |
|
252 fixes P::"'a \<Rightarrow> bool" |
|
253 and x::"'a" |
|
254 assumes a: "equivp R2" |
|
255 shows "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))" |
|
256 apply(rule iffI) |
|
257 apply(rule allI) |
|
258 apply(drule_tac x="\<lambda>y. f x" in bspec) |
|
259 apply(simp add: Respects_def in_respects) |
|
260 apply(rule impI) |
|
261 using a equivp_reflp_symp_transp[of "R2"] |
|
262 apply(simp add: reflp_def) |
|
263 apply(simp) |
|
264 apply(simp) |
|
265 done |
|
266 |
|
267 lemma bex_reg_eqv_range: |
|
268 fixes P::"'a \<Rightarrow> bool" |
|
269 and x::"'a" |
|
270 assumes a: "equivp R2" |
|
271 shows "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))" |
|
272 apply(auto) |
|
273 apply(rule_tac x="\<lambda>y. f x" in bexI) |
|
274 apply(simp) |
|
275 apply(simp add: Respects_def in_respects) |
|
276 apply(rule impI) |
|
277 using a equivp_reflp_symp_transp[of "R2"] |
|
278 apply(simp add: reflp_def) |
|
279 done |
|
280 |
|
281 lemma all_reg: |
|
282 assumes a: "!x :: 'a. (P x --> Q x)" |
|
283 and b: "All P" |
|
284 shows "All Q" |
|
285 using a b by (metis) |
|
286 |
|
287 lemma ex_reg: |
|
288 assumes a: "!x :: 'a. (P x --> Q x)" |
|
289 and b: "Ex P" |
|
290 shows "Ex Q" |
|
291 using a b by (metis) |
|
292 |
|
293 lemma ball_reg: |
|
294 assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
|
295 and b: "Ball R P" |
|
296 shows "Ball R Q" |
|
297 using a b by (metis COMBC_def Collect_def Collect_mem_eq) |
|
298 |
|
299 lemma bex_reg: |
|
300 assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
|
301 and b: "Bex R P" |
|
302 shows "Bex R Q" |
|
303 using a b by (metis COMBC_def Collect_def Collect_mem_eq) |
|
304 |
|
305 lemma ball_all_comm: |
|
306 "(\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)) \<Longrightarrow> ((\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y))" |
|
307 by auto |
|
308 |
|
309 lemma bex_ex_comm: |
|
310 "((\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)) \<Longrightarrow> ((\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y))" |
|
311 by auto |
|
312 |
|
313 (* Bounded abstraction *) |
|
314 definition |
|
315 Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" |
|
316 where |
|
317 "(x \<in> p) \<Longrightarrow> (Babs p m x = m x)" |
|
318 |
|
319 (* 3 lemmas needed for proving repabs_inj *) |
|
320 lemma ball_rsp: |
|
321 assumes a: "(R ===> (op =)) f g" |
|
322 shows "Ball (Respects R) f = Ball (Respects R) g" |
|
323 using a by (simp add: Ball_def in_respects) |
|
324 |
|
325 lemma bex_rsp: |
|
326 assumes a: "(R ===> (op =)) f g" |
|
327 shows "(Bex (Respects R) f = Bex (Respects R) g)" |
|
328 using a by (simp add: Bex_def in_respects) |
|
329 |
|
330 lemma babs_rsp: |
|
331 assumes q: "Quotient R1 Abs1 Rep1" |
|
332 and a: "(R1 ===> R2) f g" |
|
333 shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)" |
|
334 apply (auto simp add: Babs_def) |
|
335 apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1") |
|
336 using a apply (simp add: Babs_def) |
|
337 apply (simp add: in_respects) |
|
338 using Quotient_rel[OF q] |
|
339 by metis |
|
340 |
|
341 (* 2 lemmas needed for cleaning of quantifiers *) |
|
342 lemma all_prs: |
|
343 assumes a: "Quotient R absf repf" |
|
344 shows "Ball (Respects R) ((absf ---> id) f) = All f" |
|
345 using a unfolding Quotient_def |
|
346 by (metis in_respects fun_map.simps id_apply) |
|
347 |
|
348 lemma ex_prs: |
|
349 assumes a: "Quotient R absf repf" |
|
350 shows "Bex (Respects R) ((absf ---> id) f) = Ex f" |
|
351 using a unfolding Quotient_def |
|
352 by (metis COMBC_def Collect_def Collect_mem_eq in_respects fun_map.simps id_apply) |
|
353 |
|
354 lemma fun_rel_id: |
|
355 assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)" |
|
356 shows "(R1 ===> R2) f g" |
|
357 using a by simp |
|
358 |
|
359 lemma quot_rel_rsp: |
|
360 assumes a: "Quotient R Abs Rep" |
|
361 shows "(R ===> R ===> op =) R R" |
|
362 apply(rule fun_rel_id)+ |
|
363 apply(rule equals_rsp[OF a]) |
|
364 apply(assumption)+ |
|
365 done |
|
366 |
|
367 |
|
368 |
|
369 |
|
370 |
|
371 |
|
372 (******************************************) |
|
373 (* REST OF THE FILE IS UNUSED (until now) *) |
|
374 (******************************************) |
|
375 lemma Quotient_rel_abs: |
|
376 assumes a: "Quotient E Abs Rep" |
|
377 shows "E r s \<Longrightarrow> Abs r = Abs s" |
|
378 using a unfolding Quotient_def |
|
379 by blast |
|
380 |
|
381 lemma Quotient_rel_abs_eq: |
|
382 assumes a: "Quotient E Abs Rep" |
|
383 shows "E r r \<Longrightarrow> E s s \<Longrightarrow> E r s = (Abs r = Abs s)" |
|
384 using a unfolding Quotient_def |
|
385 by blast |
|
386 |
|
387 lemma in_fun: |
|
388 shows "x \<in> ((f ---> g) s) = g (f x \<in> s)" |
|
389 by (simp add: mem_def) |
|
390 |
|
391 lemma RESPECTS_THM: |
|
392 shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))" |
|
393 unfolding Respects_def |
|
394 by (simp add: expand_fun_eq) |
|
395 |
|
396 lemma RESPECTS_REP_ABS: |
|
397 assumes a: "Quotient R1 Abs1 Rep1" |
|
398 and b: "Respects (R1 ===> R2) f" |
|
399 and c: "R1 x x" |
|
400 shows "R2 (f (Rep1 (Abs1 x))) (f x)" |
|
401 using a b[simplified RESPECTS_THM] c unfolding Quotient_def |
|
402 by blast |
|
403 |
|
404 lemma RESPECTS_MP: |
|
405 assumes a: "Respects (R1 ===> R2) f" |
|
406 and b: "R1 x y" |
|
407 shows "R2 (f x) (f y)" |
|
408 using a b unfolding Respects_def |
|
409 by simp |
|
410 |
|
411 lemma RESPECTS_o: |
|
412 assumes a: "Respects (R2 ===> R3) f" |
|
413 and b: "Respects (R1 ===> R2) g" |
|
414 shows "Respects (R1 ===> R3) (f o g)" |
|
415 using a b unfolding Respects_def |
|
416 by simp |
|
417 |
|
418 lemma fun_rel_EQ_REL: |
|
419 assumes q1: "Quotient R1 Abs1 Rep1" |
|
420 and q2: "Quotient R2 Abs2 Rep2" |
|
421 shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g) |
|
422 \<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))" |
|
423 using fun_quotient[OF q1 q2] unfolding Respects_def Quotient_def expand_fun_eq |
|
424 by blast |
|
425 |
|
426 (* Not used since in the end we just unfold fun_map *) |
|
427 lemma APP_PRS: |
|
428 assumes q1: "Quotient R1 abs1 rep1" |
|
429 and q2: "Quotient R2 abs2 rep2" |
|
430 shows "abs2 ((abs1 ---> rep2) f (rep1 x)) = f x" |
|
431 unfolding expand_fun_eq |
|
432 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] |
|
433 by simp |
|
434 |
|
435 (* Ask Peter: assumption q1 and q2 not used and lemma is the 'identity' *) |
|
436 lemma LAMBDA_RSP: |
|
437 assumes q1: "Quotient R1 Abs1 Rep1" |
|
438 and q2: "Quotient R2 Abs2 Rep2" |
|
439 and a: "(R1 ===> R2) f1 f2" |
|
440 shows "(R1 ===> R2) (\<lambda>x. f1 x) (\<lambda>y. f2 y)" |
|
441 by (rule a) |
|
442 |
|
443 (* ASK Peter about next four lemmas in quotientScript |
|
444 lemma ABSTRACT_PRS: |
|
445 assumes q1: "Quotient R1 Abs1 Rep1" |
|
446 and q2: "Quotient R2 Abs2 Rep2" |
|
447 shows "f = (Rep1 ---> Abs2) ???" |
|
448 *) |
|
449 |
|
450 |
|
451 lemma fun_rel_EQUALS: |
|
452 assumes q1: "Quotient R1 Abs1 Rep1" |
|
453 and q2: "Quotient R2 Abs2 Rep2" |
|
454 and r1: "Respects (R1 ===> R2) f" |
|
455 and r2: "Respects (R1 ===> R2) g" |
|
456 shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))" |
|
457 apply(rule_tac iffI) |
|
458 using fun_quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def |
|
459 apply(metis apply_rsp') |
|
460 using r1 unfolding Respects_def expand_fun_eq |
|
461 apply(simp (no_asm_use)) |
|
462 apply(metis Quotient_rel[OF q2] Quotient_rel_rep[OF q1]) |
|
463 done |
|
464 |
|
465 (* ask Peter: fun_rel_IMP used twice *) |
|
466 lemma fun_rel_IMP2: |
|
467 assumes q1: "Quotient R1 Abs1 Rep1" |
|
468 and q2: "Quotient R2 Abs2 Rep2" |
|
469 and r1: "Respects (R1 ===> R2) f" |
|
470 and r2: "Respects (R1 ===> R2) g" |
|
471 and a: "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g" |
|
472 shows "R1 x y \<Longrightarrow> R2 (f x) (g y)" |
|
473 using q1 q2 r1 r2 a |
|
474 by (simp add: fun_rel_EQUALS) |
|
475 |
|
476 lemma LAMBDA_REP_ABS_RSP: |
|
477 assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))" |
|
478 and r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))" |
|
479 shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))" |
|
480 using r1 r2 by auto |
|
481 |
|
482 (* Not used *) |
|
483 lemma rep_abs_rsp_left: |
|
484 assumes q: "Quotient R Abs Rep" |
|
485 and a: "R x1 x2" |
|
486 shows "R x1 (Rep (Abs x2))" |
|
487 using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]) |
|
488 |
|
489 |
|
490 |
|
491 (* bool theory: COND, LET *) |
|
492 lemma IF_PRS: |
|
493 assumes q: "Quotient R Abs Rep" |
|
494 shows "If a b c = Abs (If a (Rep b) (Rep c))" |
|
495 using Quotient_abs_rep[OF q] by auto |
|
496 |
|
497 (* ask peter: no use of q *) |
|
498 lemma IF_RSP: |
|
499 assumes q: "Quotient R Abs Rep" |
|
500 and a: "a1 = a2" "R b1 b2" "R c1 c2" |
|
501 shows "R (If a1 b1 c1) (If a2 b2 c2)" |
|
502 using a by auto |
|
503 |
|
504 lemma LET_PRS: |
|
505 assumes q1: "Quotient R1 Abs1 Rep1" |
|
506 and q2: "Quotient R2 Abs2 Rep2" |
|
507 shows "Let x f = Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f))" |
|
508 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto |
|
509 |
|
510 lemma LET_RSP: |
|
511 assumes q1: "Quotient R1 Abs1 Rep1" |
|
512 and a1: "(R1 ===> R2) f g" |
|
513 and a2: "R1 x y" |
|
514 shows "R2 ((Let x f)::'c) ((Let y g)::'c)" |
|
515 using apply_rsp[OF q1 a1] a2 |
|
516 by auto |
|
517 |
|
518 |
|
519 |
|
520 (* ask peter what are literal_case *) |
|
521 (* literal_case_PRS *) |
|
522 (* literal_case_RSP *) |
|
523 |
|
524 |
|
525 |
|
526 |
|
527 |
|
528 (* combinators: I, K, o, C, W *) |
|
529 |
|
530 (* We use id_simps which includes id_apply; so these 2 theorems can be removed *) |
|
531 |
|
532 lemma I_PRS: |
|
533 assumes q: "Quotient R Abs Rep" |
|
534 shows "id e = Abs (id (Rep e))" |
|
535 using Quotient_abs_rep[OF q] by auto |
|
536 |
|
537 lemma I_RSP: |
|
538 assumes q: "Quotient R Abs Rep" |
|
539 and a: "R e1 e2" |
|
540 shows "R (id e1) (id e2)" |
|
541 using a by auto |
|
542 |
|
543 lemma o_PRS: |
|
544 assumes q1: "Quotient R1 Abs1 Rep1" |
|
545 and q2: "Quotient R2 Abs2 Rep2" |
|
546 and q3: "Quotient R3 Abs3 Rep3" |
|
547 shows "f o g = (Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g))" |
|
548 using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3] |
|
549 unfolding o_def expand_fun_eq |
|
550 by simp |
|
551 |
|
552 lemma o_RSP: |
|
553 assumes q1: "Quotient R1 Abs1 Rep1" |
|
554 and q2: "Quotient R2 Abs2 Rep2" |
|
555 and q3: "Quotient R3 Abs3 Rep3" |
|
556 and a1: "(R2 ===> R3) f1 f2" |
|
557 and a2: "(R1 ===> R2) g1 g2" |
|
558 shows "(R1 ===> R3) (f1 o g1) (f2 o g2)" |
|
559 using a1 a2 unfolding o_def expand_fun_eq |
|
560 by (auto) |
|
561 |
|
562 lemma COND_PRS: |
|
563 assumes a: "Quotient R absf repf" |
|
564 shows "(if a then b else c) = absf (if a then repf b else repf c)" |
|
565 using a unfolding Quotient_def by auto |
|
566 |
|
567 |
|
568 end |
|
569 |