Quot/QuotProd.thy
changeset 597 8a1c8dc72b5c
parent 593 18eac4596ef1
child 648 830b58c2fa94
equal deleted inserted replaced
596:6088fea1c8b1 597:8a1c8dc72b5c
       
     1 theory QuotProd
       
     2 imports QuotScript
       
     3 begin
       
     4 
       
     5 fun
       
     6   prod_rel
       
     7 where
       
     8   "prod_rel r1 r2 = (\<lambda>(a,b) (c,d). r1 a c \<and> r2 b d)"
       
     9 
       
    10 (* prod_fun is a good mapping function *)
       
    11 
       
    12 lemma prod_equivp:
       
    13   assumes a: "equivp R1"
       
    14   assumes b: "equivp R2"
       
    15   shows "equivp (prod_rel R1 R2)"
       
    16 unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
       
    17 apply(auto simp add: equivp_reflp[OF a] equivp_reflp[OF b])
       
    18 apply(simp only: equivp_symp[OF a])
       
    19 apply(simp only: equivp_symp[OF b])
       
    20 using equivp_transp[OF a] apply blast
       
    21 using equivp_transp[OF b] apply blast
       
    22 done
       
    23 
       
    24 lemma prod_quotient:
       
    25   assumes q1: "Quotient R1 Abs1 Rep1"
       
    26   assumes q2: "Quotient R2 Abs2 Rep2"
       
    27   shows "Quotient (prod_rel R1 R2) (prod_fun Abs1 Abs2) (prod_fun Rep1 Rep2)"
       
    28 unfolding Quotient_def
       
    29 apply (simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q1] Quotient_rel_rep[OF q2])
       
    30 using Quotient_rel[OF q1] Quotient_rel[OF q2] by blast
       
    31 
       
    32 lemma pair_rsp:
       
    33   assumes q1: "Quotient R1 Abs1 Rep1"
       
    34   assumes q2: "Quotient R2 Abs2 Rep2"
       
    35   shows "(R1 ===> R2 ===> prod_rel R1 R2) Pair Pair"
       
    36 by auto
       
    37 
       
    38 lemma pair_prs:
       
    39   assumes q1: "Quotient R1 Abs1 Rep1"
       
    40   assumes q2: "Quotient R2 Abs2 Rep2"
       
    41   shows "(prod_fun Abs1 Abs2) (Rep1 l, Rep2 r) \<equiv> (l, r)"
       
    42   by (simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
       
    43 
       
    44 (* TODO: Is the quotient assumption q1 necessary? *)
       
    45 (* TODO: Aren't there hard to use later? *)
       
    46 lemma fst_rsp:
       
    47   assumes q1: "Quotient R1 Abs1 Rep1"
       
    48   assumes q2: "Quotient R2 Abs2 Rep2"
       
    49   assumes a: "(prod_rel R1 R2) p1 p2"
       
    50   shows "R1 (fst p1) (fst p2)"
       
    51   using a
       
    52   apply(case_tac p1)
       
    53   apply(case_tac p2)
       
    54   apply(auto)
       
    55   done
       
    56 
       
    57 lemma snd_rsp:
       
    58   assumes q1: "Quotient R1 Abs1 Rep1"
       
    59   assumes q2: "Quotient R2 Abs2 Rep2"
       
    60   assumes a: "(prod_rel R1 R2) p1 p2"
       
    61   shows "R2 (snd p1) (snd p2)"
       
    62   using a
       
    63   apply(case_tac p1)
       
    64   apply(case_tac p2)
       
    65   apply(auto)
       
    66   done
       
    67 
       
    68 lemma fst_prs:
       
    69   assumes q1: "Quotient R1 Abs1 Rep1"
       
    70   assumes q2: "Quotient R2 Abs2 Rep2"
       
    71   shows "Abs1 (fst ((prod_fun Rep1 Rep2) p)) = fst p"
       
    72 by (case_tac p) (auto simp add: Quotient_abs_rep[OF q1])
       
    73 
       
    74 lemma snd_prs:
       
    75   assumes q1: "Quotient R1 Abs1 Rep1"
       
    76   assumes q2: "Quotient R2 Abs2 Rep2"
       
    77   shows "Abs2 (snd ((prod_fun Rep1 Rep2) p)) = snd p"
       
    78 by (case_tac p) (auto simp add: Quotient_abs_rep[OF q2])
       
    79 
       
    80 end