Quot/QuotMain.thy
changeset 597 8a1c8dc72b5c
child 600 5d932e7a856c
equal deleted inserted replaced
596:6088fea1c8b1 597:8a1c8dc72b5c
       
     1 theory QuotMain
       
     2 imports QuotScript QuotList QuotProd Prove
       
     3 uses ("quotient_info.ML")
       
     4      ("quotient.ML")
       
     5      ("quotient_def.ML")
       
     6 begin
       
     7 
       
     8 
       
     9 locale QUOT_TYPE =
       
    10   fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
       
    11   and   Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b"
       
    12   and   Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)"
       
    13   assumes equivp: "equivp R"
       
    14   and     rep_prop: "\<And>y. \<exists>x. Rep y = R x"
       
    15   and     rep_inverse: "\<And>x. Abs (Rep x) = x"
       
    16   and     abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)"
       
    17   and     rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
       
    18 begin
       
    19 
       
    20 definition
       
    21   ABS::"'a \<Rightarrow> 'b"
       
    22 where
       
    23   "ABS x \<equiv> Abs (R x)"
       
    24 
       
    25 definition
       
    26   REP::"'b \<Rightarrow> 'a"
       
    27 where
       
    28   "REP a = Eps (Rep a)"
       
    29 
       
    30 lemma lem9:
       
    31   shows "R (Eps (R x)) = R x"
       
    32 proof -
       
    33   have a: "R x x" using equivp by (simp add: equivp_reflp_symp_transp reflp_def)
       
    34   then have "R x (Eps (R x))" by (rule someI)
       
    35   then show "R (Eps (R x)) = R x"
       
    36     using equivp unfolding equivp_def by simp
       
    37 qed
       
    38 
       
    39 theorem thm10:
       
    40   shows "ABS (REP a) \<equiv> a"
       
    41   apply  (rule eq_reflection)
       
    42   unfolding ABS_def REP_def
       
    43 proof -
       
    44   from rep_prop
       
    45   obtain x where eq: "Rep a = R x" by auto
       
    46   have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp
       
    47   also have "\<dots> = Abs (R x)" using lem9 by simp
       
    48   also have "\<dots> = Abs (Rep a)" using eq by simp
       
    49   also have "\<dots> = a" using rep_inverse by simp
       
    50   finally
       
    51   show "Abs (R (Eps (Rep a))) = a" by simp
       
    52 qed
       
    53 
       
    54 lemma REP_refl:
       
    55   shows "R (REP a) (REP a)"
       
    56 unfolding REP_def
       
    57 by (simp add: equivp[simplified equivp_def])
       
    58 
       
    59 lemma lem7:
       
    60   shows "(R x = R y) = (Abs (R x) = Abs (R y))"
       
    61 apply(rule iffI)
       
    62 apply(simp)
       
    63 apply(drule rep_inject[THEN iffD2])
       
    64 apply(simp add: abs_inverse)
       
    65 done
       
    66 
       
    67 theorem thm11:
       
    68   shows "R r r' = (ABS r = ABS r')"
       
    69 unfolding ABS_def
       
    70 by (simp only: equivp[simplified equivp_def] lem7)
       
    71 
       
    72 
       
    73 lemma REP_ABS_rsp:
       
    74   shows "R f (REP (ABS g)) = R f g"
       
    75   and   "R (REP (ABS g)) f = R g f"
       
    76 by (simp_all add: thm10 thm11)
       
    77 
       
    78 lemma Quotient:
       
    79   "Quotient R ABS REP"
       
    80 apply(unfold Quotient_def)
       
    81 apply(simp add: thm10)
       
    82 apply(simp add: REP_refl)
       
    83 apply(subst thm11[symmetric])
       
    84 apply(simp add: equivp[simplified equivp_def])
       
    85 done
       
    86 
       
    87 lemma R_trans:
       
    88   assumes ab: "R a b"
       
    89   and     bc: "R b c"
       
    90   shows "R a c"
       
    91 proof -
       
    92   have tr: "transp R" using equivp equivp_reflp_symp_transp[of R] by simp
       
    93   moreover have ab: "R a b" by fact
       
    94   moreover have bc: "R b c" by fact
       
    95   ultimately show "R a c" unfolding transp_def by blast
       
    96 qed
       
    97 
       
    98 lemma R_sym:
       
    99   assumes ab: "R a b"
       
   100   shows "R b a"
       
   101 proof -
       
   102   have re: "symp R" using equivp equivp_reflp_symp_transp[of R] by simp
       
   103   then show "R b a" using ab unfolding symp_def by blast
       
   104 qed
       
   105 
       
   106 lemma R_trans2:
       
   107   assumes ac: "R a c"
       
   108   and     bd: "R b d"
       
   109   shows "R a b = R c d"
       
   110 using ac bd
       
   111 by (blast intro: R_trans R_sym)
       
   112 
       
   113 lemma REPS_same:
       
   114   shows "R (REP a) (REP b) \<equiv> (a = b)"
       
   115 proof -
       
   116   have "R (REP a) (REP b) = (a = b)"
       
   117   proof
       
   118     assume as: "R (REP a) (REP b)"
       
   119     from rep_prop
       
   120     obtain x y
       
   121       where eqs: "Rep a = R x" "Rep b = R y" by blast
       
   122     from eqs have "R (Eps (R x)) (Eps (R y))" using as unfolding REP_def by simp
       
   123     then have "R x (Eps (R y))" using lem9 by simp
       
   124     then have "R (Eps (R y)) x" using R_sym by blast
       
   125     then have "R y x" using lem9 by simp
       
   126     then have "R x y" using R_sym by blast
       
   127     then have "ABS x = ABS y" using thm11 by simp
       
   128     then have "Abs (Rep a) = Abs (Rep b)" using eqs unfolding ABS_def by simp
       
   129     then show "a = b" using rep_inverse by simp
       
   130   next
       
   131     assume ab: "a = b"
       
   132     have "reflp R" using equivp equivp_reflp_symp_transp[of R] by simp
       
   133     then show "R (REP a) (REP b)" unfolding reflp_def using ab by auto
       
   134   qed
       
   135   then show "R (REP a) (REP b) \<equiv> (a = b)" by simp
       
   136 qed
       
   137 
       
   138 end
       
   139 
       
   140 section {* type definition for the quotient type *}
       
   141 
       
   142 (* the auxiliary data for the quotient types *)
       
   143 use "quotient_info.ML"
       
   144 
       
   145 declare [[map list = (map, list_rel)]]
       
   146 declare [[map * = (prod_fun, prod_rel)]]
       
   147 declare [[map "fun" = (fun_map, fun_rel)]]
       
   148 
       
   149 (* identity quotient is not here as it has to be applied first *)
       
   150 lemmas [quotient_thm] =
       
   151   fun_quotient list_quotient prod_quotient
       
   152 
       
   153 lemmas [quotient_rsp] =
       
   154   quot_rel_rsp nil_rsp cons_rsp foldl_rsp pair_rsp
       
   155 
       
   156 (* fun_map is not here since equivp is not true *)
       
   157 (* TODO: option, ... *)
       
   158 lemmas [quotient_equiv] =
       
   159   identity_equivp list_equivp prod_equivp
       
   160 
       
   161 
       
   162 ML {* maps_lookup @{theory} "List.list" *}
       
   163 ML {* maps_lookup @{theory} "*" *}
       
   164 ML {* maps_lookup @{theory} "fun" *}
       
   165 
       
   166 
       
   167 (* definition of the quotient types *)
       
   168 (* FIXME: should be called quotient_typ.ML *)
       
   169 use "quotient.ML"
       
   170 
       
   171 
       
   172 (* lifting of constants *)
       
   173 use "quotient_def.ML"
       
   174 
       
   175 section {* Simset setup *}
       
   176 
       
   177 (* since HOL_basic_ss is too "big", we need to set up *)
       
   178 (* our own minimal simpset                            *)
       
   179 ML {*
       
   180 fun  mk_minimal_ss ctxt =
       
   181   Simplifier.context ctxt empty_ss
       
   182     setsubgoaler asm_simp_tac
       
   183     setmksimps (mksimps [])
       
   184 *}
       
   185 
       
   186 section {* atomize *}
       
   187 
       
   188 lemma atomize_eqv[atomize]:
       
   189   shows "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)"
       
   190 proof
       
   191   assume "A \<equiv> B"
       
   192   then show "Trueprop A \<equiv> Trueprop B" by unfold
       
   193 next
       
   194   assume *: "Trueprop A \<equiv> Trueprop B"
       
   195   have "A = B"
       
   196   proof (cases A)
       
   197     case True
       
   198     have "A" by fact
       
   199     then show "A = B" using * by simp
       
   200   next
       
   201     case False
       
   202     have "\<not>A" by fact
       
   203     then show "A = B" using * by auto
       
   204   qed
       
   205   then show "A \<equiv> B" by (rule eq_reflection)
       
   206 qed
       
   207 
       
   208 ML {*
       
   209 fun atomize_thm thm =
       
   210 let
       
   211   val thm' = Thm.freezeT (forall_intr_vars thm)
       
   212   val thm'' = ObjectLogic.atomize (cprop_of thm')
       
   213 in
       
   214   @{thm equal_elim_rule1} OF [thm'', thm']
       
   215 end
       
   216 *}
       
   217 
       
   218 section {* infrastructure about id *}
       
   219 
       
   220 lemma prod_fun_id: "prod_fun id id \<equiv> id"
       
   221   by (rule eq_reflection) (simp add: prod_fun_def)
       
   222 
       
   223 lemma map_id: "map id \<equiv> id"
       
   224   apply (rule eq_reflection)
       
   225   apply (rule ext)
       
   226   apply (rule_tac list="x" in list.induct)
       
   227   apply (simp_all)
       
   228   done
       
   229 
       
   230 lemmas id_simps =
       
   231   fun_map_id[THEN eq_reflection]
       
   232   id_apply[THEN eq_reflection]
       
   233   id_def[THEN eq_reflection,symmetric]
       
   234   prod_fun_id map_id
       
   235 
       
   236 ML {*
       
   237 fun simp_ids thm =
       
   238   MetaSimplifier.rewrite_rule @{thms id_simps} thm
       
   239 *}
       
   240 
       
   241 section {* Debugging infrastructure for testing tactics *}
       
   242 
       
   243 ML {*
       
   244 fun my_print_tac ctxt s i thm =
       
   245 let
       
   246   val prem_str = nth (prems_of thm) (i - 1)
       
   247                  |> Syntax.string_of_term ctxt
       
   248                  handle Subscript => "no subgoal"
       
   249   val _ = tracing (s ^ "\n" ^ prem_str)
       
   250 in
       
   251   Seq.single thm
       
   252 end *}
       
   253 
       
   254 ML {*
       
   255 fun DT ctxt s tac i thm =
       
   256 let
       
   257   val before_goal = nth (prems_of thm) (i - 1)
       
   258                     |> Syntax.string_of_term ctxt
       
   259   val before_msg = ["before: " ^ s, before_goal, "after: " ^ s]
       
   260                    |> cat_lines
       
   261 in 
       
   262   EVERY [tac i, my_print_tac ctxt before_msg i] thm
       
   263 end
       
   264 
       
   265 fun NDT ctxt s tac thm = tac thm  
       
   266 *}
       
   267 
       
   268 section {* Matching of terms and types *}
       
   269 
       
   270 ML {*
       
   271 fun matches_typ (ty, ty') =
       
   272   case (ty, ty') of
       
   273     (_, TVar _) => true
       
   274   | (TFree x, TFree x') => x = x'
       
   275   | (Type (s, tys), Type (s', tys')) => 
       
   276        s = s' andalso 
       
   277        if (length tys = length tys') 
       
   278        then (List.all matches_typ (tys ~~ tys')) 
       
   279        else false
       
   280   | _ => false
       
   281 *}
       
   282 
       
   283 ML {*
       
   284 fun matches_term (trm, trm') = 
       
   285    case (trm, trm') of 
       
   286      (_, Var _) => true
       
   287    | (Const (s, ty), Const (s', ty')) => s = s' andalso matches_typ (ty, ty')
       
   288    | (Free (x, ty), Free (x', ty')) => x = x' andalso matches_typ (ty, ty')
       
   289    | (Bound i, Bound j) => i = j
       
   290    | (Abs (_, T, t), Abs (_, T', t')) => matches_typ (T, T') andalso matches_term (t, t')
       
   291    | (t $ s, t' $ s') => matches_term (t, t') andalso matches_term (s, s') 
       
   292    | _ => false
       
   293 *}
       
   294 
       
   295 section {* Infrastructure for collecting theorems for starting the lifting *}
       
   296 
       
   297 ML {*
       
   298 fun lookup_quot_data lthy qty =
       
   299   let
       
   300     val qty_name = fst (dest_Type qty)
       
   301     val SOME quotdata = quotdata_lookup lthy qty_name
       
   302     (* TODO: Should no longer be needed *)
       
   303     val rty = Logic.unvarifyT (#rtyp quotdata)
       
   304     val rel = #rel quotdata
       
   305     val rel_eqv = #equiv_thm quotdata
       
   306     val rel_refl = @{thm equivp_reflp} OF [rel_eqv]
       
   307   in
       
   308     (rty, rel, rel_refl, rel_eqv)
       
   309   end
       
   310 *}
       
   311 
       
   312 ML {*
       
   313 fun lookup_quot_thms lthy qty_name =
       
   314   let
       
   315     val thy = ProofContext.theory_of lthy;
       
   316     val trans2 = PureThy.get_thm thy ("QUOT_TYPE_I_" ^ qty_name ^ ".R_trans2")
       
   317     val reps_same = PureThy.get_thm thy ("QUOT_TYPE_I_" ^ qty_name ^ ".REPS_same")
       
   318     val absrep = PureThy.get_thm thy ("QUOT_TYPE_I_" ^ qty_name ^ ".thm10")
       
   319     val quot = PureThy.get_thm thy ("Quotient_" ^ qty_name)
       
   320   in
       
   321     (trans2, reps_same, absrep, quot)
       
   322   end
       
   323 *}
       
   324 
       
   325 section {* Regularization *} 
       
   326 
       
   327 (*
       
   328 Regularizing an rtrm means:
       
   329  - quantifiers over a type that needs lifting are replaced by
       
   330    bounded quantifiers, for example:
       
   331       \<forall>x. P     \<Longrightarrow>     \<forall>x \<in> (Respects R). P  /  All (Respects R) P
       
   332 
       
   333    the relation R is given by the rty and qty;
       
   334  
       
   335  - abstractions over a type that needs lifting are replaced
       
   336    by bounded abstractions:
       
   337       \<lambda>x. P     \<Longrightarrow>     Ball (Respects R) (\<lambda>x. P)
       
   338 
       
   339  - equalities over the type being lifted are replaced by
       
   340    corresponding relations:
       
   341       A = B     \<Longrightarrow>     A \<approx> B
       
   342 
       
   343    example with more complicated types of A, B:
       
   344       A = B     \<Longrightarrow>     (op = \<Longrightarrow> op \<approx>) A B
       
   345 *)
       
   346 
       
   347 ML {*
       
   348 (* builds the relation that is the argument of respects *)
       
   349 fun mk_resp_arg lthy (rty, qty) =
       
   350 let
       
   351   val thy = ProofContext.theory_of lthy
       
   352 in  
       
   353   if rty = qty
       
   354   then HOLogic.eq_const rty
       
   355   else
       
   356     case (rty, qty) of
       
   357       (Type (s, tys), Type (s', tys')) =>
       
   358        if s = s' 
       
   359        then let
       
   360               val SOME map_info = maps_lookup thy s
       
   361               val args = map (mk_resp_arg lthy) (tys ~~ tys')
       
   362             in
       
   363               list_comb (Const (#relfun map_info, dummyT), args) 
       
   364             end  
       
   365        else let  
       
   366               val SOME qinfo = quotdata_lookup_thy thy s'
       
   367               (* FIXME: check in this case that the rty and qty *)
       
   368               (* FIXME: correspond to each other *)
       
   369               val (s, _) = dest_Const (#rel qinfo)
       
   370               (* FIXME: the relation should only be the string        *)
       
   371               (* FIXME: and the type needs to be calculated as below; *)
       
   372               (* FIXME: maybe one should actually have a term         *)
       
   373               (* FIXME: and one needs to force it to have this type   *)
       
   374             in
       
   375               Const (s, rty --> rty --> @{typ bool})
       
   376             end
       
   377       | _ => HOLogic.eq_const dummyT 
       
   378              (* FIXME: check that the types correspond to each other? *)
       
   379 end
       
   380 *}
       
   381 
       
   382 ML {*
       
   383 val mk_babs = Const (@{const_name Babs}, dummyT)
       
   384 val mk_ball = Const (@{const_name Ball}, dummyT)
       
   385 val mk_bex  = Const (@{const_name Bex}, dummyT)
       
   386 val mk_resp = Const (@{const_name Respects}, dummyT)
       
   387 *}
       
   388 
       
   389 ML {*
       
   390 (* - applies f to the subterm of an abstraction,   *)
       
   391 (*   otherwise to the given term,                  *)
       
   392 (* - used by regularize, therefore abstracted      *)
       
   393 (*   variables do not have to be treated specially *)
       
   394 
       
   395 fun apply_subt f trm1 trm2 =
       
   396   case (trm1, trm2) of
       
   397     (Abs (x, T, t), Abs (x', T', t')) => Abs (x, T, f t t')
       
   398   | _ => f trm1 trm2
       
   399 
       
   400 (* the major type of All and Ex quantifiers *)
       
   401 fun qnt_typ ty = domain_type (domain_type ty)  
       
   402 *}
       
   403 
       
   404 ML {*
       
   405 (* produces a regularized version of rtm      *)
       
   406 (* - the result is still not completely typed *)
       
   407 (* - does not need any special treatment of   *)
       
   408 (*   bound variables                          *)
       
   409 
       
   410 fun regularize_trm lthy rtrm qtrm =
       
   411   case (rtrm, qtrm) of
       
   412     (Abs (x, ty, t), Abs (x', ty', t')) =>
       
   413        let
       
   414          val subtrm = Abs(x, ty, regularize_trm lthy t t')
       
   415        in
       
   416          if ty = ty'
       
   417          then subtrm
       
   418          else mk_babs $ (mk_resp $ mk_resp_arg lthy (ty, ty')) $ subtrm
       
   419        end
       
   420 
       
   421   | (Const (@{const_name "All"}, ty) $ t, Const (@{const_name "All"}, ty') $ t') =>
       
   422        let
       
   423          val subtrm = apply_subt (regularize_trm lthy) t t'
       
   424        in
       
   425          if ty = ty'
       
   426          then Const (@{const_name "All"}, ty) $ subtrm
       
   427          else mk_ball $ (mk_resp $ mk_resp_arg lthy (qnt_typ ty, qnt_typ ty')) $ subtrm
       
   428        end
       
   429 
       
   430   | (Const (@{const_name "Ex"}, ty) $ t, Const (@{const_name "Ex"}, ty') $ t') =>
       
   431        let
       
   432          val subtrm = apply_subt (regularize_trm lthy) t t'
       
   433        in
       
   434          if ty = ty'
       
   435          then Const (@{const_name "Ex"}, ty) $ subtrm
       
   436          else mk_bex $ (mk_resp $ mk_resp_arg lthy (qnt_typ ty, qnt_typ ty')) $ subtrm
       
   437        end
       
   438 
       
   439   | (* equalities need to be replaced by appropriate equivalence relations *) 
       
   440     (Const (@{const_name "op ="}, ty), Const (@{const_name "op ="}, ty')) =>
       
   441          if ty = ty'
       
   442          then rtrm
       
   443          else mk_resp_arg lthy (domain_type ty, domain_type ty') 
       
   444 
       
   445   | (* in this case we check whether the given equivalence relation is correct *) 
       
   446     (rel, Const (@{const_name "op ="}, ty')) =>
       
   447        let 
       
   448          val exc = LIFT_MATCH "regularise (relation mismatch)"
       
   449          val rel_ty = (fastype_of rel) handle TERM _ => raise exc 
       
   450          val rel' = mk_resp_arg lthy (domain_type rel_ty, domain_type ty') 
       
   451        in 
       
   452          if rel' = rel
       
   453          then rtrm
       
   454          else raise exc
       
   455        end  
       
   456   | (_, Const (s, _)) =>
       
   457        let 
       
   458          fun same_name (Const (s, _)) (Const (s', _)) = (s = s')
       
   459            | same_name _ _ = false
       
   460        in
       
   461          if same_name rtrm qtrm 
       
   462          then rtrm 
       
   463          else 
       
   464            let 
       
   465              fun exc1 s = LIFT_MATCH ("regularize (constant " ^ s ^ " not found)")
       
   466              val exc2   = LIFT_MATCH ("regularize (constant mismatch)")
       
   467              val thy = ProofContext.theory_of lthy
       
   468              val rtrm' = (#rconst (qconsts_lookup thy s)) handle NotFound => raise (exc1 s) 
       
   469            in 
       
   470              if matches_term (rtrm, rtrm')
       
   471              then rtrm
       
   472              else raise exc2
       
   473            end
       
   474        end 
       
   475 
       
   476   | (t1 $ t2, t1' $ t2') =>
       
   477        (regularize_trm lthy t1 t1') $ (regularize_trm lthy t2 t2')
       
   478 
       
   479   | (Free (x, ty), Free (x', ty')) => 
       
   480        (* this case cannot arrise as we start with two fully atomized terms *)
       
   481        raise (LIFT_MATCH "regularize (frees)")
       
   482 
       
   483   | (Bound i, Bound i') =>
       
   484        if i = i' 
       
   485        then rtrm 
       
   486        else raise (LIFT_MATCH "regularize (bounds mismatch)")
       
   487 
       
   488   | (rt, qt) =>
       
   489        raise (LIFT_MATCH "regularize (default)")
       
   490 *}
       
   491 
       
   492 ML {*
       
   493 fun equiv_tac ctxt =
       
   494   REPEAT_ALL_NEW (FIRST' 
       
   495     [resolve_tac (equiv_rules_get ctxt)])
       
   496 *}
       
   497 
       
   498 ML {*
       
   499 fun equiv_solver_tac ss = equiv_tac (Simplifier.the_context ss)
       
   500 val equiv_solver = Simplifier.mk_solver' "Equivalence goal solver" equiv_solver_tac
       
   501 *}
       
   502 
       
   503 ML {*
       
   504 fun prep_trm thy (x, (T, t)) =
       
   505   (cterm_of thy (Var (x, T)), cterm_of thy t)
       
   506 
       
   507 fun prep_ty thy (x, (S, ty)) =
       
   508   (ctyp_of thy (TVar (x, S)), ctyp_of thy ty)
       
   509 *}
       
   510 
       
   511 ML {*
       
   512 fun matching_prs thy pat trm =
       
   513 let
       
   514   val univ = Unify.matchers thy [(pat, trm)]
       
   515   val SOME (env, _) = Seq.pull univ
       
   516   val tenv = Vartab.dest (Envir.term_env env)
       
   517   val tyenv = Vartab.dest (Envir.type_env env)
       
   518 in
       
   519   (map (prep_ty thy) tyenv, map (prep_trm thy) tenv)
       
   520 end
       
   521 *}
       
   522 
       
   523 ML {*
       
   524 fun calculate_instance ctxt thm redex R1 R2 =
       
   525 let
       
   526   val thy = ProofContext.theory_of ctxt
       
   527   val goal = Const (@{const_name "equivp"}, dummyT) $ R2  
       
   528              |> Syntax.check_term ctxt
       
   529              |> HOLogic.mk_Trueprop 
       
   530   val eqv_prem = Goal.prove ctxt [] [] goal (fn {context,...} => equiv_tac context 1)
       
   531   val thm = (@{thm eq_reflection} OF [thm OF [eqv_prem]])
       
   532   val R1c = cterm_of thy R1
       
   533   val thmi = Drule.instantiate' [] [SOME R1c] thm
       
   534   val inst = matching_prs thy (term_of (Thm.lhs_of thmi)) redex
       
   535   val thm2 = Drule.eta_contraction_rule (Drule.instantiate inst thmi)
       
   536 in
       
   537   SOME thm2
       
   538 end
       
   539 handle _ => NONE
       
   540 (* FIXME/TODO: what is the place where the exception can be raised: matching_prs? *)
       
   541 *}
       
   542 
       
   543 ML {*
       
   544 fun ball_bex_range_simproc ss redex =
       
   545 let
       
   546   val ctxt = Simplifier.the_context ss
       
   547 in 
       
   548  case redex of
       
   549     (Const (@{const_name "Ball"}, _) $ (Const (@{const_name "Respects"}, _) $ 
       
   550       (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) =>
       
   551         calculate_instance ctxt @{thm ball_reg_eqv_range} redex R1 R2
       
   552   | (Const (@{const_name "Bex"}, _) $ (Const (@{const_name "Respects"}, _) $ 
       
   553       (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) =>  
       
   554         calculate_instance ctxt @{thm bex_reg_eqv_range} redex R1 R2
       
   555   | _ => NONE
       
   556 end
       
   557 *}
       
   558 
       
   559 lemma eq_imp_rel: 
       
   560   shows "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b"
       
   561 by (simp add: equivp_reflp)
       
   562 
       
   563 (* FIXME/TODO: How does regularizing work? *)
       
   564 (* FIXME/TODO: needs to be adapted
       
   565 
       
   566 To prove that the raw theorem implies the regularised one, 
       
   567 we try in order:
       
   568 
       
   569  - Reflexivity of the relation
       
   570  - Assumption
       
   571  - Elimnating quantifiers on both sides of toplevel implication
       
   572  - Simplifying implications on both sides of toplevel implication
       
   573  - Ball (Respects ?E) ?P = All ?P
       
   574  - (\<And>x. ?R x \<Longrightarrow> ?P x \<longrightarrow> ?Q x) \<Longrightarrow> All ?P \<longrightarrow> Ball ?R ?Q
       
   575 
       
   576 *)
       
   577 ML {*
       
   578 fun regularize_tac ctxt =
       
   579 let
       
   580   val thy = ProofContext.theory_of ctxt
       
   581   val pat_ball = @{term "Ball (Respects (R1 ===> R2)) P"}
       
   582   val pat_bex  = @{term "Bex (Respects (R1 ===> R2)) P"}
       
   583   val simproc = Simplifier.simproc_i thy "" [pat_ball, pat_bex] (K (ball_bex_range_simproc))
       
   584   val simpset = (mk_minimal_ss ctxt) 
       
   585                        addsimps @{thms ball_reg_eqv bex_reg_eqv}
       
   586                        addsimprocs [simproc] addSolver equiv_solver
       
   587   (* TODO: Make sure that there are no list_rel, pair_rel etc involved *)
       
   588   val eq_eqvs = map (fn x => @{thm eq_imp_rel} OF [x]) (equiv_rules_get ctxt)
       
   589 in
       
   590   ObjectLogic.full_atomize_tac THEN'
       
   591   simp_tac simpset THEN'
       
   592   REPEAT_ALL_NEW (FIRST' [
       
   593     rtac @{thm ball_reg_right},
       
   594     rtac @{thm bex_reg_left},
       
   595     resolve_tac (Inductive.get_monos ctxt),
       
   596     rtac @{thm ball_all_comm},
       
   597     rtac @{thm bex_ex_comm},
       
   598     resolve_tac eq_eqvs,
       
   599     simp_tac simpset])
       
   600 end
       
   601 *}
       
   602 
       
   603 section {* Injections of rep and abses *}
       
   604 
       
   605 (*
       
   606 Injecting repabs means:
       
   607 
       
   608   For abstractions:
       
   609   * If the type of the abstraction doesn't need lifting we recurse.
       
   610   * If it does we add RepAbs around the whole term and check if the
       
   611     variable needs lifting.
       
   612     * If it doesn't then we recurse
       
   613     * If it does we recurse and put 'RepAbs' around all occurences
       
   614       of the variable in the obtained subterm. This in combination
       
   615       with the RepAbs above will let us change the type of the
       
   616       abstraction with rewriting.
       
   617   For applications:
       
   618   * If the term is 'Respects' applied to anything we leave it unchanged
       
   619   * If the term needs lifting and the head is a constant that we know
       
   620     how to lift, we put a RepAbs and recurse
       
   621   * If the term needs lifting and the head is a free applied to subterms
       
   622     (if it is not applied we treated it in Abs branch) then we
       
   623     put RepAbs and recurse
       
   624   * Otherwise just recurse.
       
   625 *)
       
   626 
       
   627 ML {*
       
   628 fun mk_repabs lthy (T, T') trm = 
       
   629   Quotient_Def.get_fun repF lthy (T, T') 
       
   630     $ (Quotient_Def.get_fun absF lthy (T, T') $ trm)
       
   631 *}
       
   632 
       
   633 ML {*
       
   634 (* bound variables need to be treated properly,    *)
       
   635 (* as the type of subterms need to be calculated   *)
       
   636 (* in the abstraction case                         *)
       
   637 
       
   638 fun inj_repabs_trm lthy (rtrm, qtrm) =
       
   639  case (rtrm, qtrm) of
       
   640     (Const (@{const_name "Ball"}, T) $ r $ t, Const (@{const_name "All"}, _) $ t') =>
       
   641        Const (@{const_name "Ball"}, T) $ r $ (inj_repabs_trm lthy (t, t'))
       
   642 
       
   643   | (Const (@{const_name "Bex"}, T) $ r $ t, Const (@{const_name "Ex"}, _) $ t') =>
       
   644        Const (@{const_name "Bex"}, T) $ r $ (inj_repabs_trm lthy (t, t'))
       
   645 
       
   646   | (Const (@{const_name "Babs"}, T) $ r $ t, t' as (Abs _)) =>
       
   647        Const (@{const_name "Babs"}, T) $ r $ (inj_repabs_trm lthy (t, t'))
       
   648 
       
   649   | (Abs (x, T, t), Abs (x', T', t')) =>
       
   650       let
       
   651         val rty = fastype_of rtrm
       
   652         val qty = fastype_of qtrm
       
   653         val (y, s) = Term.dest_abs (x, T, t)
       
   654         val (_, s') = Term.dest_abs (x', T', t')
       
   655         val yvar = Free (y, T)
       
   656         val result = Term.lambda_name (y, yvar) (inj_repabs_trm lthy (s, s'))
       
   657       in
       
   658         if rty = qty 
       
   659         then result
       
   660         else mk_repabs lthy (rty, qty) result
       
   661       end
       
   662 
       
   663   | (t $ s, t' $ s') =>  
       
   664        (inj_repabs_trm lthy (t, t')) $ (inj_repabs_trm lthy (s, s'))
       
   665 
       
   666   | (Free (_, T), Free (_, T')) => 
       
   667         if T = T' 
       
   668         then rtrm 
       
   669         else mk_repabs lthy (T, T') rtrm
       
   670 
       
   671   | (_, Const (@{const_name "op ="}, _)) => rtrm
       
   672 
       
   673     (* FIXME: check here that rtrm is the corresponding definition for the const *)
       
   674   | (_, Const (_, T')) =>
       
   675       let
       
   676         val rty = fastype_of rtrm
       
   677       in 
       
   678         if rty = T'                    
       
   679         then rtrm
       
   680         else mk_repabs lthy (rty, T') rtrm
       
   681       end   
       
   682   
       
   683   | _ => raise (LIFT_MATCH "injection")
       
   684 *}
       
   685 
       
   686 section {* RepAbs Injection Tactic *}
       
   687 
       
   688 ML {*
       
   689 fun quotient_tac ctxt =
       
   690   REPEAT_ALL_NEW (FIRST'
       
   691     [rtac @{thm identity_quotient},
       
   692      resolve_tac (quotient_rules_get ctxt)])
       
   693 *}
       
   694 
       
   695 (* solver for the simplifier *)
       
   696 ML {*
       
   697 fun quotient_solver_tac ss = quotient_tac (Simplifier.the_context ss)
       
   698 val quotient_solver = Simplifier.mk_solver' "Quotient goal solver" quotient_solver_tac
       
   699 *}
       
   700 
       
   701 ML {*
       
   702 fun solve_quotient_assums ctxt thm =
       
   703   let val gl = hd (Drule.strip_imp_prems (cprop_of thm)) in
       
   704   thm OF [Goal.prove_internal [] gl (fn _ => quotient_tac ctxt 1)]
       
   705   end
       
   706   handle _ => error "solve_quotient_assums failed. Maybe a quotient_thm is missing"
       
   707 *}
       
   708 
       
   709 (* Not used *)
       
   710 (* It proves the Quotient assumptions by calling quotient_tac *)
       
   711 ML {*
       
   712 fun solve_quotient_assum i ctxt thm =
       
   713   let
       
   714     val tac =
       
   715       (compose_tac (false, thm, i)) THEN_ALL_NEW
       
   716       (quotient_tac ctxt);
       
   717     val gc = Drule.strip_imp_concl (cprop_of thm);
       
   718   in
       
   719     Goal.prove_internal [] gc (fn _ => tac 1)
       
   720   end
       
   721   handle _ => error "solve_quotient_assum"
       
   722 *}
       
   723 
       
   724 definition
       
   725   "QUOT_TRUE x \<equiv> True"
       
   726 
       
   727 ML {*
       
   728 fun find_qt_asm asms =
       
   729   let
       
   730     fun find_fun trm =
       
   731       case trm of
       
   732         (Const(@{const_name Trueprop}, _) $ (Const (@{const_name QUOT_TRUE}, _) $ _)) => true
       
   733       | _ => false
       
   734   in
       
   735     case find_first find_fun asms of
       
   736       SOME (_ $ (_ $ (f $ a))) => (f, a)
       
   737     | SOME _ => error "find_qt_asm: no pair"
       
   738     | NONE => error "find_qt_asm: no assumption"
       
   739   end
       
   740 *}
       
   741 
       
   742 (*
       
   743 To prove that the regularised theorem implies the abs/rep injected, 
       
   744 we try:
       
   745 
       
   746  1) theorems 'trans2' from the appropriate QUOT_TYPE
       
   747  2) remove lambdas from both sides: lambda_rsp_tac
       
   748  3) remove Ball/Bex from the right hand side
       
   749  4) use user-supplied RSP theorems
       
   750  5) remove rep_abs from the right side
       
   751  6) reflexivity of equality
       
   752  7) split applications of lifted type (apply_rsp)
       
   753  8) split applications of non-lifted type (cong_tac)
       
   754  9) apply extentionality
       
   755  A) reflexivity of the relation
       
   756  B) assumption
       
   757     (Lambdas under respects may have left us some assumptions)
       
   758  C) proving obvious higher order equalities by simplifying fun_rel
       
   759     (not sure if it is still needed?)
       
   760  D) unfolding lambda on one side
       
   761  E) simplifying (= ===> =) for simpler respectfulness
       
   762 
       
   763 *)
       
   764 
       
   765 lemma quot_true_dests:
       
   766   shows QT_all: "QUOT_TRUE (All P) \<Longrightarrow> QUOT_TRUE P"
       
   767   and   QT_ex:  "QUOT_TRUE (Ex P) \<Longrightarrow> QUOT_TRUE P"
       
   768   and   QT_lam: "QUOT_TRUE (\<lambda>x. P x) \<Longrightarrow> (\<And>x. QUOT_TRUE  (P x))"
       
   769   and   QT_ext: "(\<And>x. QUOT_TRUE (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (QUOT_TRUE a \<Longrightarrow> f = g)"
       
   770 apply(simp_all add: QUOT_TRUE_def ext)
       
   771 done
       
   772 
       
   773 lemma QUOT_TRUE_i: "(QUOT_TRUE (a :: bool) \<Longrightarrow> P) \<Longrightarrow> P"
       
   774 by (simp add: QUOT_TRUE_def)
       
   775 
       
   776 lemma QUOT_TRUE_imp: "QUOT_TRUE a \<equiv> QUOT_TRUE b"
       
   777 by (simp add: QUOT_TRUE_def)
       
   778 
       
   779 ML {*
       
   780 fun quot_true_conv1 ctxt fnctn ctrm =
       
   781   case (term_of ctrm) of
       
   782     (Const (@{const_name QUOT_TRUE}, _) $ x) =>
       
   783     let
       
   784       val fx = fnctn x;
       
   785       val thy = ProofContext.theory_of ctxt;
       
   786       val cx = cterm_of thy x;
       
   787       val cfx = cterm_of thy fx;
       
   788       val cxt = ctyp_of thy (fastype_of x);
       
   789       val cfxt = ctyp_of thy (fastype_of fx);
       
   790       val thm = Drule.instantiate' [SOME cxt, SOME cfxt] [SOME cx, SOME cfx] @{thm QUOT_TRUE_imp}
       
   791     in
       
   792       Conv.rewr_conv thm ctrm
       
   793     end
       
   794 *}
       
   795 
       
   796 ML {*
       
   797 fun quot_true_conv ctxt fnctn ctrm =
       
   798   case (term_of ctrm) of
       
   799     (Const (@{const_name QUOT_TRUE}, _) $ _) =>
       
   800       quot_true_conv1 ctxt fnctn ctrm
       
   801   | _ $ _ => Conv.comb_conv (quot_true_conv ctxt fnctn) ctrm
       
   802   | Abs _ => Conv.abs_conv (fn (_, ctxt) => quot_true_conv ctxt fnctn) ctxt ctrm
       
   803   | _ => Conv.all_conv ctrm
       
   804 *}
       
   805 
       
   806 ML {*
       
   807 fun quot_true_tac ctxt fnctn = CONVERSION
       
   808     ((Conv.params_conv ~1 (fn ctxt =>
       
   809        (Conv.prems_conv ~1 (quot_true_conv ctxt fnctn)))) ctxt)
       
   810 *}
       
   811 
       
   812 ML {* fun dest_comb (f $ a) = (f, a) *}
       
   813 ML {* fun dest_bcomb ((_ $ l) $ r) = (l, r) *}
       
   814 (* TODO: Can this be done easier? *)
       
   815 ML {*
       
   816 fun unlam t =
       
   817   case t of
       
   818     (Abs a) => snd (Term.dest_abs a)
       
   819   | _ => unlam (Abs("", domain_type (fastype_of t), (incr_boundvars 1 t) $ (Bound 0)))
       
   820 *}
       
   821 
       
   822 ML {*
       
   823 fun dest_fun_type (Type("fun", [T, S])) = (T, S)
       
   824   | dest_fun_type _ = error "dest_fun_type"
       
   825 *}
       
   826 
       
   827 ML {*
       
   828 val bare_concl = HOLogic.dest_Trueprop o Logic.strip_assums_concl
       
   829 *}
       
   830 
       
   831 ML {*
       
   832 val apply_rsp_tac =
       
   833   Subgoal.FOCUS (fn {concl, asms, context,...} =>
       
   834     case ((HOLogic.dest_Trueprop (term_of concl))) of
       
   835       ((R2 $ (f $ x) $ (g $ y))) =>
       
   836         (let
       
   837           val (asmf, asma) = find_qt_asm (map term_of asms);
       
   838         in
       
   839           if (fastype_of asmf) = (fastype_of f) then no_tac else let
       
   840             val ty_a = fastype_of x;
       
   841             val ty_b = fastype_of asma;
       
   842             val ty_c = range_type (type_of f);
       
   843             val thy = ProofContext.theory_of context;
       
   844             val ty_inst = map (SOME o (ctyp_of thy)) [ty_a, ty_b, ty_c];
       
   845             val thm = Drule.instantiate' ty_inst [] @{thm apply_rsp}
       
   846             val te = solve_quotient_assums context thm
       
   847             val t_inst = map (SOME o (cterm_of thy)) [R2, f, g, x, y];
       
   848             val thm = Drule.instantiate' [] t_inst te
       
   849           in
       
   850             compose_tac (false, thm, 2) 1
       
   851           end
       
   852         end
       
   853         handle ERROR "find_qt_asm: no pair" => no_tac)
       
   854     | _ => no_tac)
       
   855 *}
       
   856 ML {*
       
   857 fun SOLVES' tac = tac THEN_ALL_NEW (fn _ => no_tac)
       
   858 *}
       
   859 
       
   860 ML {*
       
   861 fun rep_abs_rsp_tac ctxt =
       
   862   SUBGOAL (fn (goal, i) =>
       
   863     case (bare_concl goal) of 
       
   864       (rel $ _ $ (rep $ (abs $ _))) =>
       
   865         (let
       
   866            val thy = ProofContext.theory_of ctxt;
       
   867            val (ty_a, ty_b) = dest_fun_type (fastype_of abs);
       
   868            val ty_inst = map (SOME o (ctyp_of thy)) [ty_a, ty_b];
       
   869            val t_inst = map (SOME o (cterm_of thy)) [rel, abs, rep];
       
   870            val thm = Drule.instantiate' ty_inst t_inst @{thm rep_abs_rsp}
       
   871            val te = solve_quotient_assums ctxt thm
       
   872          in
       
   873            rtac te i
       
   874          end
       
   875          handle _ => no_tac)
       
   876     | _ => no_tac)
       
   877 *}
       
   878 
       
   879 ML {*
       
   880 fun inj_repabs_tac_match ctxt trans2 = SUBGOAL (fn (goal, i) =>
       
   881 (case (bare_concl goal) of
       
   882     (* (R1 ===> R2) (\<lambda>x\<dots>) (\<lambda>y\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (\<dots>x) (\<dots>y) *)
       
   883   ((Const (@{const_name fun_rel}, _) $ _ $ _) $ (Abs _) $ (Abs _))
       
   884       => rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam
       
   885 
       
   886     (* (op =) (Ball\<dots>) (Ball\<dots>) ----> (op =) (\<dots>) (\<dots>) *)
       
   887 | (Const (@{const_name "op ="},_) $
       
   888     (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
       
   889     (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _))
       
   890       => rtac @{thm ball_rsp} THEN' dtac @{thm QT_all}
       
   891 
       
   892     (* (R1 ===> op =) (Ball\<dots>) (Ball\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> (Ball\<dots>x) = (Ball\<dots>y) *)
       
   893 | (Const (@{const_name fun_rel}, _) $ _ $ _) $
       
   894     (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
       
   895     (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
       
   896       => rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam
       
   897 
       
   898     (* (op =) (Bex\<dots>) (Bex\<dots>) ----> (op =) (\<dots>) (\<dots>) *)
       
   899 | Const (@{const_name "op ="},_) $
       
   900     (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
       
   901     (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
       
   902       => rtac @{thm bex_rsp} THEN' dtac @{thm QT_ex}
       
   903 
       
   904     (* (R1 ===> op =) (Bex\<dots>) (Bex\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> (Bex\<dots>x) = (Bex\<dots>y) *)
       
   905 | (Const (@{const_name fun_rel}, _) $ _ $ _) $
       
   906     (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
       
   907     (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
       
   908       => rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam
       
   909 
       
   910 | (_ $
       
   911     (Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
       
   912     (Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _))
       
   913       => rtac @{thm babs_rsp} THEN' RANGE [quotient_tac ctxt]
       
   914 
       
   915     (* reflexivity of operators arising from Cong_tac *)
       
   916 | Const (@{const_name "op ="},_) $ _ $ _ 
       
   917       => rtac @{thm refl} ORELSE'
       
   918           (resolve_tac trans2 THEN' RANGE [
       
   919             quot_true_tac ctxt (fst o dest_bcomb), quot_true_tac ctxt (snd o dest_bcomb)])
       
   920 
       
   921 (* TODO: These patterns should should be somehow combined and generalized... *)
       
   922 | (Const (@{const_name fun_rel}, _) $ _ $ _) $
       
   923     (Const (@{const_name fun_rel}, _) $ _ $ _) $
       
   924     (Const (@{const_name fun_rel}, _) $ _ $ _)
       
   925     => rtac @{thm quot_rel_rsp} THEN_ALL_NEW quotient_tac ctxt
       
   926 
       
   927 | (Const (@{const_name fun_rel}, _) $ _ $ _) $
       
   928     (Const (@{const_name prod_rel}, _) $ _ $ _) $
       
   929     (Const (@{const_name prod_rel}, _) $ _ $ _)
       
   930     => rtac @{thm quot_rel_rsp} THEN_ALL_NEW quotient_tac ctxt
       
   931 
       
   932    (* respectfulness of constants; in particular of a simple relation *)
       
   933 | _ $ (Const _) $ (Const _)  (* fun_rel, list_rel, etc but not equality *)
       
   934     => resolve_tac (rsp_rules_get ctxt) THEN_ALL_NEW quotient_tac ctxt
       
   935 
       
   936     (* R (\<dots>) (Rep (Abs \<dots>)) ----> R (\<dots>) (\<dots>) *)
       
   937     (* observe ---> *)
       
   938 | _ $ _ $ _ 
       
   939     => rep_abs_rsp_tac ctxt
       
   940 
       
   941 | _ => error "inj_repabs_tac not a relation"
       
   942 ) i)
       
   943 *}
       
   944 
       
   945 ML {*
       
   946 fun inj_repabs_tac ctxt rel_refl trans2 =
       
   947   (FIRST' [
       
   948     inj_repabs_tac_match ctxt trans2,
       
   949     (* R (t $ \<dots>) (t' $ \<dots>) ----> apply_rsp   provided type of t needs lifting *)
       
   950     NDT ctxt "A" (apply_rsp_tac ctxt THEN'
       
   951                 (RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)])),
       
   952     (* (op =) (t $ \<dots>) (t' $ \<dots>) ----> Cong   provided type of t does not need lifting *)
       
   953     (* merge with previous tactic *)
       
   954     NDT ctxt "B" (Cong_Tac.cong_tac @{thm cong} THEN'
       
   955                 (RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)])),
       
   956     (* (op =) (\<lambda>x\<dots>) (\<lambda>x\<dots>) ----> (op =) (\<dots>) (\<dots>) *)
       
   957     NDT ctxt "C" (rtac @{thm ext} THEN' quot_true_tac ctxt unlam),
       
   958     (* resolving with R x y assumptions *)
       
   959     NDT ctxt "E" (atac),
       
   960     (* reflexivity of the basic relations *)
       
   961     (* R \<dots> \<dots> *)
       
   962     NDT ctxt "D" (resolve_tac rel_refl)
       
   963     ])
       
   964 *}
       
   965 
       
   966 ML {*
       
   967 fun all_inj_repabs_tac ctxt rel_refl trans2 =
       
   968   REPEAT_ALL_NEW (inj_repabs_tac ctxt rel_refl trans2)
       
   969 *}
       
   970 
       
   971 section {* Cleaning of the theorem *}
       
   972 
       
   973 ML {*
       
   974 fun make_inst lhs t =
       
   975   let
       
   976     val _ $ (Abs (_, _, (f as Var (_, Type ("fun", [T, _]))) $ u)) = lhs;
       
   977     val _ $ (Abs (_, _, g)) = t;
       
   978     fun mk_abs i t =
       
   979       if incr_boundvars i u aconv t then Bound i
       
   980       else (case t of
       
   981         t1 $ t2 => mk_abs i t1 $ mk_abs i t2
       
   982       | Abs (s, T, t') => Abs (s, T, mk_abs (i + 1) t')
       
   983       | Bound j => if i = j then error "make_inst" else t
       
   984       | _ => t);
       
   985   in (f, Abs ("x", T, mk_abs 0 g)) end;
       
   986 *}
       
   987 
       
   988 ML {*
       
   989 fun lambda_prs_simple_conv ctxt ctrm =
       
   990   case (term_of ctrm) of
       
   991    ((Const (@{const_name fun_map}, _) $ r1 $ (a2 as (Const (s,_)))) $ (Abs _)) =>
       
   992      let
       
   993        val thy = ProofContext.theory_of ctxt
       
   994        val (ty_b, ty_a) = dest_fun_type (fastype_of r1)
       
   995        val (ty_c, ty_d) = dest_fun_type (fastype_of a2)
       
   996        val tyinst = map (SOME o (ctyp_of thy)) [ty_a, ty_b, ty_c, ty_d]
       
   997        val tinst = [NONE, NONE, SOME (cterm_of thy r1), NONE, SOME (cterm_of thy a2)]
       
   998        val lpi = Drule.instantiate' tyinst tinst @{thm lambda_prs}
       
   999        val te = @{thm eq_reflection} OF [solve_quotient_assums ctxt (solve_quotient_assums ctxt lpi)]
       
  1000        val ts = MetaSimplifier.rewrite_rule @{thms id_simps} te
       
  1001        val _ = tracing ("te rule:\n" ^ (Syntax.string_of_term ctxt (prop_of te)));
       
  1002        val tl = Thm.lhs_of ts
       
  1003        val (insp, inst) = make_inst (term_of tl) (term_of ctrm)
       
  1004        val ti = Drule.instantiate ([], [(cterm_of thy insp, cterm_of thy inst)]) ts
       
  1005        val _ = if not (s = @{const_name "id"}) then
       
  1006                   (tracing "lambda_prs";
       
  1007                    tracing ("redex:\n" ^ (Syntax.string_of_term ctxt (term_of ctrm)));
       
  1008                    tracing ("lpi rule:\n" ^ (Syntax.string_of_term ctxt (prop_of lpi)));
       
  1009                    tracing ("te rule:\n" ^ (Syntax.string_of_term ctxt (prop_of te)));
       
  1010                    tracing ("ts rule:\n" ^ (Syntax.string_of_term ctxt (prop_of ts)));
       
  1011                    tracing ("instantiated rule:\n" ^ (Syntax.string_of_term ctxt (prop_of ti))))
       
  1012                else ()
       
  1013      in
       
  1014        Conv.rewr_conv ti ctrm
       
  1015      end
       
  1016   | _ => Conv.all_conv ctrm
       
  1017 *}
       
  1018 
       
  1019 ML {*
       
  1020 val lambda_prs_conv =
       
  1021   More_Conv.top_conv lambda_prs_simple_conv
       
  1022 
       
  1023 fun lambda_prs_tac ctxt = CONVERSION (lambda_prs_conv ctxt)
       
  1024 *}
       
  1025 
       
  1026 (*
       
  1027  Cleaning the theorem consists of three rewriting steps.
       
  1028  The first two need to be done before fun_map is unfolded
       
  1029 
       
  1030  1) lambda_prs:
       
  1031      (Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x)))  ---->  f
       
  1032 
       
  1033     Implemented as conversion since it is not a pattern.
       
  1034 
       
  1035  2) all_prs (the same for exists):
       
  1036      Ball (Respects R) ((abs ---> id) f)  ---->  All f
       
  1037 
       
  1038     Rewriting with definitions from the argument defs
       
  1039      (rep ---> abs) oldConst ----> newconst
       
  1040 
       
  1041  3) Quotient_rel_rep:
       
  1042       Rel (Rep x) (Rep y)  ---->  x = y
       
  1043 
       
  1044     Quotient_abs_rep:
       
  1045       Abs (Rep x)  ---->  x
       
  1046 
       
  1047     id_simps; fun_map.simps
       
  1048 *)
       
  1049 
       
  1050 ML {*
       
  1051 fun clean_tac lthy =
       
  1052   let
       
  1053     val thy = ProofContext.theory_of lthy;
       
  1054     val defs = map (Thm.varifyT o symmetric o #def) (qconsts_dest thy)
       
  1055       (* FIXME: shouldn't the definitions already be varified? *)
       
  1056     val thms1 = @{thms all_prs ex_prs} @ defs
       
  1057     val thms2 = @{thms eq_reflection[OF fun_map.simps]} 
       
  1058                 @ @{thms id_simps Quotient_abs_rep Quotient_rel_rep} 
       
  1059     fun simps thms = (mk_minimal_ss lthy) addsimps thms addSolver quotient_solver
       
  1060   in
       
  1061     EVERY' [lambda_prs_tac lthy,
       
  1062             simp_tac (simps thms1),
       
  1063             simp_tac (simps thms2),
       
  1064             TRY o rtac refl]
       
  1065   end
       
  1066 *}
       
  1067 
       
  1068 section {* Genralisation of free variables in a goal *}
       
  1069 
       
  1070 ML {*
       
  1071 fun inst_spec ctrm =
       
  1072    Drule.instantiate' [SOME (ctyp_of_term ctrm)] [NONE, SOME ctrm] @{thm spec}
       
  1073 
       
  1074 fun inst_spec_tac ctrms =
       
  1075   EVERY' (map (dtac o inst_spec) ctrms)
       
  1076 
       
  1077 fun all_list xs trm = 
       
  1078   fold (fn (x, T) => fn t' => HOLogic.mk_all (x, T, t')) xs trm
       
  1079 
       
  1080 fun apply_under_Trueprop f = 
       
  1081   HOLogic.dest_Trueprop #> f #> HOLogic.mk_Trueprop
       
  1082 
       
  1083 fun gen_frees_tac ctxt =
       
  1084  SUBGOAL (fn (concl, i) =>
       
  1085   let
       
  1086     val thy = ProofContext.theory_of ctxt
       
  1087     val vrs = Term.add_frees concl []
       
  1088     val cvrs = map (cterm_of thy o Free) vrs
       
  1089     val concl' = apply_under_Trueprop (all_list vrs) concl
       
  1090     val goal = Logic.mk_implies (concl', concl)
       
  1091     val rule = Goal.prove ctxt [] [] goal 
       
  1092       (K (EVERY1 [inst_spec_tac (rev cvrs), atac]))
       
  1093   in
       
  1094     rtac rule i
       
  1095   end)  
       
  1096 *}
       
  1097 
       
  1098 section {* General outline of the lifting procedure *}
       
  1099 
       
  1100 (* - A is the original raw theorem          *)
       
  1101 (* - B is the regularized theorem           *)
       
  1102 (* - C is the rep/abs injected version of B *) 
       
  1103 (* - D is the lifted theorem                *)
       
  1104 (*                                          *)
       
  1105 (* - b is the regularization step           *)
       
  1106 (* - c is the rep/abs injection step        *)
       
  1107 (* - d is the cleaning part                 *)
       
  1108 
       
  1109 lemma lifting_procedure:
       
  1110   assumes a: "A"
       
  1111   and     b: "A \<Longrightarrow> B"
       
  1112   and     c: "B = C"
       
  1113   and     d: "C = D"
       
  1114   shows   "D"
       
  1115   using a b c d
       
  1116   by simp
       
  1117 
       
  1118 ML {*
       
  1119 fun lift_match_error ctxt fun_str rtrm qtrm =
       
  1120 let
       
  1121   val rtrm_str = Syntax.string_of_term ctxt rtrm
       
  1122   val qtrm_str = Syntax.string_of_term ctxt qtrm
       
  1123   val msg = [enclose "[" "]" fun_str, "The quotient theorem\n", qtrm_str, 
       
  1124              "and the lifted theorem\n", rtrm_str, "do not match"]
       
  1125 in
       
  1126   error (space_implode " " msg)
       
  1127 end
       
  1128 *}
       
  1129 
       
  1130 ML {* 
       
  1131 fun procedure_inst ctxt rtrm qtrm =
       
  1132 let
       
  1133   val thy = ProofContext.theory_of ctxt
       
  1134   val rtrm' = HOLogic.dest_Trueprop rtrm
       
  1135   val qtrm' = HOLogic.dest_Trueprop qtrm
       
  1136   val reg_goal = 
       
  1137         Syntax.check_term ctxt (regularize_trm ctxt rtrm' qtrm')
       
  1138         handle (LIFT_MATCH s) => lift_match_error ctxt s rtrm qtrm
       
  1139   val _ = warning "Regularization done."
       
  1140   val inj_goal = 
       
  1141         Syntax.check_term ctxt (inj_repabs_trm ctxt (reg_goal, qtrm'))
       
  1142         handle (LIFT_MATCH s) => lift_match_error ctxt s rtrm qtrm
       
  1143   val _ = warning "RepAbs Injection done."
       
  1144 in
       
  1145   Drule.instantiate' []
       
  1146     [SOME (cterm_of thy rtrm'),
       
  1147      SOME (cterm_of thy reg_goal),
       
  1148      SOME (cterm_of thy inj_goal)] @{thm lifting_procedure}
       
  1149 end
       
  1150 *}
       
  1151 
       
  1152 (* Left for debugging *)
       
  1153 ML {*
       
  1154 fun procedure_tac ctxt rthm =
       
  1155   ObjectLogic.full_atomize_tac
       
  1156   THEN' gen_frees_tac ctxt
       
  1157   THEN' CSUBGOAL (fn (gl, i) =>
       
  1158     let
       
  1159       val rthm' = atomize_thm rthm
       
  1160       val rule = procedure_inst ctxt (prop_of rthm') (term_of gl)
       
  1161       val thm = Drule.instantiate' [] [SOME (snd (Thm.dest_comb gl))] @{thm QUOT_TRUE_i}
       
  1162     in
       
  1163       (rtac rule THEN' RANGE [rtac rthm', (fn _ => all_tac), rtac thm]) i
       
  1164     end)
       
  1165 *}
       
  1166 
       
  1167 ML {*
       
  1168 (* FIXME/TODO should only get as arguments the rthm like procedure_tac *)
       
  1169 
       
  1170 fun lift_tac ctxt rthm =
       
  1171   ObjectLogic.full_atomize_tac
       
  1172   THEN' gen_frees_tac ctxt
       
  1173   THEN' CSUBGOAL (fn (gl, i) =>
       
  1174     let
       
  1175       val rthm' = atomize_thm rthm
       
  1176       val rule = procedure_inst ctxt (prop_of rthm') (term_of gl)
       
  1177       val rel_refl = map (fn x => @{thm equivp_reflp} OF [x]) (equiv_rules_get ctxt)
       
  1178       val quotients = quotient_rules_get ctxt
       
  1179       val trans2 = map (fn x => @{thm equals_rsp} OF [x]) quotients
       
  1180       val thm = Drule.instantiate' [] [SOME (snd (Thm.dest_comb gl))] @{thm QUOT_TRUE_i}
       
  1181     in
       
  1182       (rtac rule THEN'
       
  1183        RANGE [rtac rthm',
       
  1184               regularize_tac ctxt,
       
  1185               rtac thm THEN' all_inj_repabs_tac ctxt rel_refl trans2,
       
  1186               clean_tac ctxt]) i
       
  1187     end)
       
  1188 *}
       
  1189 
       
  1190 end
       
  1191