|
1 theory IntEx2 |
|
2 imports "../QuotMain" |
|
3 uses |
|
4 ("Tools/numeral.ML") |
|
5 ("Tools/numeral_syntax.ML") |
|
6 ("Tools/int_arith.ML") |
|
7 begin |
|
8 |
|
9 |
|
10 fun |
|
11 intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infix "\<approx>" 50) |
|
12 where |
|
13 "intrel (x, y) (u, v) = (x + v = u + y)" |
|
14 |
|
15 quotient int = "nat \<times> nat" / intrel |
|
16 apply(unfold equivp_def) |
|
17 apply(auto simp add: mem_def expand_fun_eq) |
|
18 done |
|
19 |
|
20 instantiation int :: "{zero, one, plus, minus, uminus, times, ord, abs, sgn}" |
|
21 begin |
|
22 |
|
23 quotient_def |
|
24 zero_qnt::"int" |
|
25 where |
|
26 "zero_qnt \<equiv> (0::nat, 0::nat)" |
|
27 |
|
28 definition Zero_int_def[code del]: |
|
29 "0 = zero_qnt" |
|
30 |
|
31 quotient_def |
|
32 one_qnt::"int" |
|
33 where |
|
34 "one_qnt \<equiv> (1::nat, 0::nat)" |
|
35 |
|
36 definition One_int_def[code del]: |
|
37 "1 = one_qnt" |
|
38 |
|
39 fun |
|
40 plus_raw :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)" |
|
41 where |
|
42 "plus_raw (x, y) (u, v) = (x + u, y + v)" |
|
43 |
|
44 quotient_def |
|
45 plus_qnt::"int \<Rightarrow> int \<Rightarrow> int" |
|
46 where |
|
47 "plus_qnt \<equiv> plus_raw" |
|
48 |
|
49 definition add_int_def[code del]: |
|
50 "z + w = plus_qnt z w" |
|
51 |
|
52 fun |
|
53 minus_raw :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)" |
|
54 where |
|
55 "minus_raw (x, y) = (y, x)" |
|
56 |
|
57 quotient_def |
|
58 minus_qnt::"int \<Rightarrow> int" |
|
59 where |
|
60 "minus_qnt \<equiv> minus_raw" |
|
61 |
|
62 definition minus_int_def [code del]: |
|
63 "- z = minus_qnt z" |
|
64 |
|
65 definition |
|
66 diff_int_def [code del]: "z - w = z + (-w::int)" |
|
67 |
|
68 fun |
|
69 mult_raw :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)" |
|
70 where |
|
71 "mult_raw (x, y) (u, v) = (x*u + y*v, x*v + y*u)" |
|
72 |
|
73 quotient_def |
|
74 mult_qnt::"int \<Rightarrow> int \<Rightarrow> int" |
|
75 where |
|
76 "mult_qnt \<equiv> mult_raw" |
|
77 |
|
78 definition |
|
79 mult_int_def [code del]: "z * w = mult_qnt z w" |
|
80 |
|
81 fun |
|
82 le_raw :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" |
|
83 where |
|
84 "le_raw (x, y) (u, v) = (x+v \<le> u+y)" |
|
85 |
|
86 quotient_def |
|
87 le_qnt :: "int \<Rightarrow> int \<Rightarrow> bool" |
|
88 where |
|
89 "le_qnt \<equiv> le_raw" |
|
90 |
|
91 definition |
|
92 le_int_def [code del]: |
|
93 "z \<le> w = le_qnt z w" |
|
94 |
|
95 definition |
|
96 less_int_def [code del]: "(z\<Colon>int) < w = (z \<le> w \<and> z \<noteq> w)" |
|
97 |
|
98 definition |
|
99 zabs_def: "\<bar>i\<Colon>int\<bar> = (if i < 0 then - i else i)" |
|
100 |
|
101 definition |
|
102 zsgn_def: "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)" |
|
103 |
|
104 instance .. |
|
105 |
|
106 end |
|
107 |
|
108 thm add_assoc |
|
109 |
|
110 lemma plus_raw_rsp[quotient_rsp]: |
|
111 shows "(op \<approx> ===> op \<approx> ===> op \<approx>) plus_raw plus_raw" |
|
112 by auto |
|
113 |
|
114 lemma minus_raw_rsp[quotient_rsp]: |
|
115 shows "(op \<approx> ===> op \<approx>) minus_raw minus_raw" |
|
116 by auto |
|
117 |
|
118 lemma mult_raw_rsp[quotient_rsp]: |
|
119 shows "(op \<approx> ===> op \<approx> ===> op \<approx>) mult_raw mult_raw" |
|
120 apply(auto) |
|
121 apply(simp add: mult algebra_simps) |
|
122 sorry |
|
123 |
|
124 lemma le_raw_rsp[quotient_rsp]: |
|
125 shows "(op \<approx> ===> op \<approx> ===> op =) le_raw le_raw" |
|
126 by auto |
|
127 |
|
128 lemma plus_assoc_raw: |
|
129 shows "plus_raw (plus_raw i j) k \<approx> plus_raw i (plus_raw j k)" |
|
130 by (cases i, cases j, cases k) (simp) |
|
131 |
|
132 lemma plus_sym_raw: |
|
133 shows "plus_raw i j \<approx> plus_raw j i" |
|
134 by (cases i, cases j) (simp) |
|
135 |
|
136 lemma plus_zero_raw: |
|
137 shows "plus_raw (0, 0) i \<approx> i" |
|
138 by (cases i) (simp) |
|
139 |
|
140 lemma plus_minus_zero_raw: |
|
141 shows "plus_raw (minus_raw i) i \<approx> (0, 0)" |
|
142 by (cases i) (simp) |
|
143 |
|
144 lemma mult_assoc_raw: |
|
145 shows "mult_raw (mult_raw i j) k \<approx> mult_raw i (mult_raw j k)" |
|
146 by (cases i, cases j, cases k) |
|
147 (simp add: mult algebra_simps) |
|
148 |
|
149 lemma mult_sym_raw: |
|
150 shows "mult_raw i j \<approx> mult_raw j i" |
|
151 by (cases i, cases j) (simp) |
|
152 |
|
153 lemma mult_one_raw: |
|
154 shows "mult_raw (1, 0) i \<approx> i" |
|
155 by (cases i) (simp) |
|
156 |
|
157 lemma mult_plus_comm_raw: |
|
158 shows "mult_raw (plus_raw i j) k \<approx> plus_raw (mult_raw i k) (mult_raw j k)" |
|
159 by (cases i, cases j, cases k) |
|
160 (simp add: mult algebra_simps) |
|
161 |
|
162 lemma one_zero_distinct: |
|
163 shows "\<not> (0, 0) \<approx> ((1::nat), (0::nat))" |
|
164 by simp |
|
165 |
|
166 text{*The integers form a @{text comm_ring_1}*} |
|
167 |
|
168 |
|
169 ML {* val qty = @{typ "int"} *} |
|
170 ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *} |
|
171 ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "int" *} |
|
172 |
|
173 instance int :: comm_ring_1 |
|
174 proof |
|
175 fix i j k :: int |
|
176 show "(i + j) + k = i + (j + k)" |
|
177 unfolding add_int_def |
|
178 apply(tactic {* lift_tac @{context} @{thm plus_assoc_raw} 1 *}) |
|
179 done |
|
180 show "i + j = j + i" |
|
181 unfolding add_int_def |
|
182 apply(tactic {* lift_tac @{context} @{thm plus_sym_raw} 1 *}) |
|
183 done |
|
184 show "0 + i = (i::int)" |
|
185 unfolding add_int_def Zero_int_def |
|
186 apply(tactic {* lift_tac @{context} @{thm plus_zero_raw} 1 *}) |
|
187 done |
|
188 show "- i + i = 0" |
|
189 unfolding add_int_def minus_int_def Zero_int_def |
|
190 apply(tactic {* lift_tac @{context} @{thm plus_minus_zero_raw} 1 *}) |
|
191 done |
|
192 show "i - j = i + - j" |
|
193 by (simp add: diff_int_def) |
|
194 show "(i * j) * k = i * (j * k)" |
|
195 unfolding mult_int_def |
|
196 apply(tactic {* lift_tac @{context} @{thm mult_assoc_raw} 1 *}) |
|
197 done |
|
198 show "i * j = j * i" |
|
199 unfolding mult_int_def |
|
200 apply(tactic {* lift_tac @{context} @{thm mult_sym_raw} 1 *}) |
|
201 done |
|
202 show "1 * i = i" |
|
203 unfolding mult_int_def One_int_def |
|
204 apply(tactic {* lift_tac @{context} @{thm mult_one_raw} 1 *}) |
|
205 done |
|
206 show "(i + j) * k = i * k + j * k" |
|
207 unfolding mult_int_def add_int_def |
|
208 apply(tactic {* lift_tac @{context} @{thm mult_plus_comm_raw} 1 *}) |
|
209 done |
|
210 show "0 \<noteq> (1::int)" |
|
211 unfolding Zero_int_def One_int_def |
|
212 apply(tactic {* lift_tac @{context} @{thm one_zero_distinct} 1 *}) |
|
213 done |
|
214 qed |
|
215 |
|
216 term of_nat |
|
217 thm of_nat_def |
|
218 |
|
219 lemma int_def: "of_nat m = ABS_int (m, 0)" |
|
220 apply(induct m) |
|
221 apply(simp add: Zero_int_def zero_qnt_def) |
|
222 apply(simp) |
|
223 apply(simp add: add_int_def One_int_def) |
|
224 apply(simp add: plus_qnt_def one_qnt_def) |
|
225 oops |
|
226 |
|
227 lemma le_antisym_raw: |
|
228 shows "le_raw i j \<Longrightarrow> le_raw j i \<Longrightarrow> i \<approx> j" |
|
229 by (cases i, cases j) (simp) |
|
230 |
|
231 lemma le_refl_raw: |
|
232 shows "le_raw i i" |
|
233 by (cases i) (simp) |
|
234 |
|
235 lemma le_trans_raw: |
|
236 shows "le_raw i j \<Longrightarrow> le_raw j k \<Longrightarrow> le_raw i k" |
|
237 by (cases i, cases j, cases k) (simp) |
|
238 |
|
239 lemma le_cases_raw: |
|
240 shows "le_raw i j \<or> le_raw j i" |
|
241 by (cases i, cases j) |
|
242 (simp add: linorder_linear) |
|
243 |
|
244 instance int :: linorder |
|
245 proof |
|
246 fix i j k :: int |
|
247 show antisym: "i \<le> j \<Longrightarrow> j \<le> i \<Longrightarrow> i = j" |
|
248 unfolding le_int_def |
|
249 apply(tactic {* lift_tac @{context} @{thm le_antisym_raw} 1 *}) |
|
250 done |
|
251 show "(i < j) = (i \<le> j \<and> \<not> j \<le> i)" |
|
252 by (auto simp add: less_int_def dest: antisym) |
|
253 show "i \<le> i" |
|
254 unfolding le_int_def |
|
255 apply(tactic {* lift_tac @{context} @{thm le_refl_raw} 1 *}) |
|
256 done |
|
257 show "i \<le> j \<Longrightarrow> j \<le> k \<Longrightarrow> i \<le> k" |
|
258 unfolding le_int_def |
|
259 apply(tactic {* lift_tac @{context} @{thm le_trans_raw} 1 *}) |
|
260 done |
|
261 show "i \<le> j \<or> j \<le> i" |
|
262 unfolding le_int_def |
|
263 apply(tactic {* lift_tac @{context} @{thm le_cases_raw} 1 *}) |
|
264 done |
|
265 qed |
|
266 |
|
267 instantiation int :: distrib_lattice |
|
268 begin |
|
269 |
|
270 definition |
|
271 "(inf \<Colon> int \<Rightarrow> int \<Rightarrow> int) = min" |
|
272 |
|
273 definition |
|
274 "(sup \<Colon> int \<Rightarrow> int \<Rightarrow> int) = max" |
|
275 |
|
276 instance |
|
277 by intro_classes |
|
278 (auto simp add: inf_int_def sup_int_def min_max.sup_inf_distrib1) |
|
279 |
|
280 end |
|
281 |
|
282 lemma le_plus_raw: |
|
283 shows "le_raw i j \<Longrightarrow> le_raw (plus_raw k i) (plus_raw k j)" |
|
284 by (cases i, cases j, cases k) (simp) |
|
285 |
|
286 |
|
287 instance int :: pordered_cancel_ab_semigroup_add |
|
288 proof |
|
289 fix i j k :: int |
|
290 show "i \<le> j \<Longrightarrow> k + i \<le> k + j" |
|
291 unfolding le_int_def add_int_def |
|
292 apply(tactic {* lift_tac @{context} @{thm le_plus_raw} 1 *}) |
|
293 done |
|
294 qed |
|
295 |
|
296 lemma test: |
|
297 "\<lbrakk>le_raw i j \<and> \<not>i \<approx> j; le_raw (0, 0) k \<and> \<not>(0, 0) \<approx> k\<rbrakk> |
|
298 \<Longrightarrow> le_raw (mult_raw k i) (mult_raw k j) \<and> \<not>mult_raw k i \<approx> mult_raw k j" |
|
299 apply(cases i, cases j, cases k) |
|
300 apply(auto simp add: mult algebra_simps) |
|
301 sorry |
|
302 |
|
303 |
|
304 text{*The integers form an ordered integral domain*} |
|
305 instance int :: ordered_idom |
|
306 proof |
|
307 fix i j k :: int |
|
308 show "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j" |
|
309 unfolding mult_int_def le_int_def less_int_def Zero_int_def |
|
310 apply(tactic {* lift_tac @{context} @{thm test} 1 *}) |
|
311 done |
|
312 show "\<bar>i\<bar> = (if i < 0 then -i else i)" |
|
313 by (simp only: zabs_def) |
|
314 show "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)" |
|
315 by (simp only: zsgn_def) |
|
316 qed |
|
317 |
|
318 instance int :: lordered_ring |
|
319 proof |
|
320 fix k :: int |
|
321 show "abs k = sup k (- k)" |
|
322 by (auto simp add: sup_int_def zabs_def less_minus_self_iff [symmetric]) |
|
323 qed |
|
324 |
|
325 lemmas int_distrib = |
|
326 left_distrib [of "z1::int" "z2" "w", standard] |
|
327 right_distrib [of "w::int" "z1" "z2", standard] |
|
328 left_diff_distrib [of "z1::int" "z2" "w", standard] |
|
329 right_diff_distrib [of "w::int" "z1" "z2", standard] |
|
330 |
|
331 |
|
332 subsection {* Embedding of the Integers into any @{text ring_1}: @{text of_int}*} |
|
333 |
|
334 (* |
|
335 context ring_1 |
|
336 begin |
|
337 |
|
338 |
|
339 definition |
|
340 of_int :: "int \<Rightarrow> 'a" |
|
341 where |
|
342 "of_int |
|
343 *) |
|
344 |
|
345 |
|
346 subsection {* Binary representation *} |
|
347 |
|
348 text {* |
|
349 This formalization defines binary arithmetic in terms of the integers |
|
350 rather than using a datatype. This avoids multiple representations (leading |
|
351 zeroes, etc.) See @{text "ZF/Tools/twos-compl.ML"}, function @{text |
|
352 int_of_binary}, for the numerical interpretation. |
|
353 |
|
354 The representation expects that @{text "(m mod 2)"} is 0 or 1, |
|
355 even if m is negative; |
|
356 For instance, @{text "-5 div 2 = -3"} and @{text "-5 mod 2 = 1"}; thus |
|
357 @{text "-5 = (-3)*2 + 1"}. |
|
358 |
|
359 This two's complement binary representation derives from the paper |
|
360 "An Efficient Representation of Arithmetic for Term Rewriting" by |
|
361 Dave Cohen and Phil Watson, Rewriting Techniques and Applications, |
|
362 Springer LNCS 488 (240-251), 1991. |
|
363 *} |
|
364 |
|
365 subsubsection {* The constructors @{term Bit0}, @{term Bit1}, @{term Pls} and @{term Min} *} |
|
366 |
|
367 definition |
|
368 Pls :: int where |
|
369 [code del]: "Pls = 0" |
|
370 |
|
371 definition |
|
372 Min :: int where |
|
373 [code del]: "Min = - 1" |
|
374 |
|
375 definition |
|
376 Bit0 :: "int \<Rightarrow> int" where |
|
377 [code del]: "Bit0 k = k + k" |
|
378 |
|
379 definition |
|
380 Bit1 :: "int \<Rightarrow> int" where |
|
381 [code del]: "Bit1 k = 1 + k + k" |
|
382 |
|
383 class number = -- {* for numeric types: nat, int, real, \dots *} |
|
384 fixes number_of :: "int \<Rightarrow> 'a" |
|
385 |
|
386 use "~~/src/HOL/Tools/numeral.ML" |
|
387 |
|
388 syntax |
|
389 "_Numeral" :: "num_const \<Rightarrow> 'a" ("_") |
|
390 |
|
391 use "~~/src/HOL/Tools/numeral_syntax.ML" |
|
392 (* |
|
393 setup NumeralSyntax.setup |
|
394 |
|
395 abbreviation |
|
396 "Numeral0 \<equiv> number_of Pls" |
|
397 |
|
398 abbreviation |
|
399 "Numeral1 \<equiv> number_of (Bit1 Pls)" |
|
400 |
|
401 lemma Let_number_of [simp]: "Let (number_of v) f = f (number_of v)" |
|
402 -- {* Unfold all @{text let}s involving constants *} |
|
403 unfolding Let_def .. |
|
404 |
|
405 definition |
|
406 succ :: "int \<Rightarrow> int" where |
|
407 [code del]: "succ k = k + 1" |
|
408 |
|
409 definition |
|
410 pred :: "int \<Rightarrow> int" where |
|
411 [code del]: "pred k = k - 1" |
|
412 |
|
413 lemmas |
|
414 max_number_of [simp] = max_def |
|
415 [of "number_of u" "number_of v", standard, simp] |
|
416 and |
|
417 min_number_of [simp] = min_def |
|
418 [of "number_of u" "number_of v", standard, simp] |
|
419 -- {* unfolding @{text minx} and @{text max} on numerals *} |
|
420 |
|
421 lemmas numeral_simps = |
|
422 succ_def pred_def Pls_def Min_def Bit0_def Bit1_def |
|
423 |
|
424 text {* Removal of leading zeroes *} |
|
425 |
|
426 lemma Bit0_Pls [simp, code_post]: |
|
427 "Bit0 Pls = Pls" |
|
428 unfolding numeral_simps by simp |
|
429 |
|
430 lemma Bit1_Min [simp, code_post]: |
|
431 "Bit1 Min = Min" |
|
432 unfolding numeral_simps by simp |
|
433 |
|
434 lemmas normalize_bin_simps = |
|
435 Bit0_Pls Bit1_Min |
|
436 *) |