|
1 theory IntEx |
|
2 imports "../QuotMain" |
|
3 begin |
|
4 |
|
5 fun |
|
6 intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infix "\<approx>" 50) |
|
7 where |
|
8 "intrel (x, y) (u, v) = (x + v = u + y)" |
|
9 |
|
10 quotient my_int = "nat \<times> nat" / intrel |
|
11 apply(unfold equivp_def) |
|
12 apply(auto simp add: mem_def expand_fun_eq) |
|
13 done |
|
14 |
|
15 thm quotient_equiv |
|
16 |
|
17 thm quotient_thm |
|
18 |
|
19 thm my_int_equivp |
|
20 |
|
21 print_theorems |
|
22 print_quotients |
|
23 |
|
24 quotient_def |
|
25 ZERO::"my_int" |
|
26 where |
|
27 "ZERO \<equiv> (0::nat, 0::nat)" |
|
28 |
|
29 ML {* print_qconstinfo @{context} *} |
|
30 |
|
31 term ZERO |
|
32 thm ZERO_def |
|
33 |
|
34 ML {* prop_of @{thm ZERO_def} *} |
|
35 |
|
36 ML {* separate *} |
|
37 |
|
38 quotient_def |
|
39 ONE::"my_int" |
|
40 where |
|
41 "ONE \<equiv> (1::nat, 0::nat)" |
|
42 |
|
43 ML {* print_qconstinfo @{context} *} |
|
44 |
|
45 term ONE |
|
46 thm ONE_def |
|
47 |
|
48 fun |
|
49 my_plus :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)" |
|
50 where |
|
51 "my_plus (x, y) (u, v) = (x + u, y + v)" |
|
52 |
|
53 quotient_def |
|
54 PLUS::"my_int \<Rightarrow> my_int \<Rightarrow> my_int" |
|
55 where |
|
56 "PLUS \<equiv> my_plus" |
|
57 |
|
58 term my_plus |
|
59 term PLUS |
|
60 thm PLUS_def |
|
61 |
|
62 fun |
|
63 my_neg :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)" |
|
64 where |
|
65 "my_neg (x, y) = (y, x)" |
|
66 |
|
67 quotient_def |
|
68 NEG::"my_int \<Rightarrow> my_int" |
|
69 where |
|
70 "NEG \<equiv> my_neg" |
|
71 |
|
72 term NEG |
|
73 thm NEG_def |
|
74 |
|
75 definition |
|
76 MINUS :: "my_int \<Rightarrow> my_int \<Rightarrow> my_int" |
|
77 where |
|
78 "MINUS z w = PLUS z (NEG w)" |
|
79 |
|
80 fun |
|
81 my_mult :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)" |
|
82 where |
|
83 "my_mult (x, y) (u, v) = (x*u + y*v, x*v + y*u)" |
|
84 |
|
85 quotient_def |
|
86 MULT::"my_int \<Rightarrow> my_int \<Rightarrow> my_int" |
|
87 where |
|
88 "MULT \<equiv> my_mult" |
|
89 |
|
90 term MULT |
|
91 thm MULT_def |
|
92 |
|
93 (* NOT SURE WETHER THIS DEFINITION IS CORRECT *) |
|
94 fun |
|
95 my_le :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" |
|
96 where |
|
97 "my_le (x, y) (u, v) = (x+v \<le> u+y)" |
|
98 |
|
99 quotient_def |
|
100 LE :: "my_int \<Rightarrow> my_int \<Rightarrow> bool" |
|
101 where |
|
102 "LE \<equiv> my_le" |
|
103 |
|
104 term LE |
|
105 thm LE_def |
|
106 |
|
107 |
|
108 definition |
|
109 LESS :: "my_int \<Rightarrow> my_int \<Rightarrow> bool" |
|
110 where |
|
111 "LESS z w = (LE z w \<and> z \<noteq> w)" |
|
112 |
|
113 term LESS |
|
114 thm LESS_def |
|
115 |
|
116 definition |
|
117 ABS :: "my_int \<Rightarrow> my_int" |
|
118 where |
|
119 "ABS i = (if (LESS i ZERO) then (NEG i) else i)" |
|
120 |
|
121 definition |
|
122 SIGN :: "my_int \<Rightarrow> my_int" |
|
123 where |
|
124 "SIGN i = (if i = ZERO then ZERO else if (LESS ZERO i) then ONE else (NEG ONE))" |
|
125 |
|
126 ML {* print_qconstinfo @{context} *} |
|
127 |
|
128 lemma plus_sym_pre: |
|
129 shows "my_plus a b \<approx> my_plus b a" |
|
130 apply(cases a) |
|
131 apply(cases b) |
|
132 apply(auto) |
|
133 done |
|
134 |
|
135 lemma plus_rsp[quotient_rsp]: |
|
136 shows "(intrel ===> intrel ===> intrel) my_plus my_plus" |
|
137 by (simp) |
|
138 |
|
139 ML {* val qty = @{typ "my_int"} *} |
|
140 ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *} |
|
141 ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "my_int"; *} |
|
142 |
|
143 ML {* fun lift_tac_intex lthy t = lift_tac lthy t *} |
|
144 |
|
145 ML {* fun inj_repabs_tac_intex lthy = inj_repabs_tac lthy [rel_refl] [trans2] *} |
|
146 ML {* fun all_inj_repabs_tac_intex lthy = all_inj_repabs_tac lthy [rel_refl] [trans2] *} |
|
147 |
|
148 lemma test1: "my_plus a b = my_plus a b" |
|
149 apply(rule refl) |
|
150 done |
|
151 |
|
152 lemma "PLUS a b = PLUS a b" |
|
153 apply(tactic {* procedure_tac @{context} @{thm test1} 1 *}) |
|
154 apply(tactic {* regularize_tac @{context} 1 *}) |
|
155 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
156 apply(tactic {* clean_tac @{context} 1 *}) |
|
157 done |
|
158 |
|
159 thm lambda_prs |
|
160 |
|
161 lemma test2: "my_plus a = my_plus a" |
|
162 apply(rule refl) |
|
163 done |
|
164 |
|
165 lemma "PLUS a = PLUS a" |
|
166 apply(tactic {* procedure_tac @{context} @{thm test2} 1 *}) |
|
167 apply(rule ballI) |
|
168 apply(rule apply_rsp[OF Quotient_my_int plus_rsp]) |
|
169 apply(simp only: in_respects) |
|
170 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
171 apply(tactic {* clean_tac @{context} 1 *}) |
|
172 done |
|
173 |
|
174 lemma test3: "my_plus = my_plus" |
|
175 apply(rule refl) |
|
176 done |
|
177 |
|
178 lemma "PLUS = PLUS" |
|
179 apply(tactic {* procedure_tac @{context} @{thm test3} 1 *}) |
|
180 apply(rule plus_rsp) |
|
181 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
182 apply(tactic {* clean_tac @{context} 1 *}) |
|
183 done |
|
184 |
|
185 |
|
186 lemma "PLUS a b = PLUS b a" |
|
187 apply(tactic {* procedure_tac @{context} @{thm plus_sym_pre} 1 *}) |
|
188 apply(tactic {* regularize_tac @{context} 1 *}) |
|
189 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
190 apply(tactic {* clean_tac @{context} 1 *}) |
|
191 done |
|
192 |
|
193 lemma plus_assoc_pre: |
|
194 shows "my_plus (my_plus i j) k \<approx> my_plus i (my_plus j k)" |
|
195 apply (cases i) |
|
196 apply (cases j) |
|
197 apply (cases k) |
|
198 apply (simp) |
|
199 done |
|
200 |
|
201 lemma plus_assoc: "PLUS (PLUS x xa) xb = PLUS x (PLUS xa xb)" |
|
202 apply(tactic {* procedure_tac @{context} @{thm plus_assoc_pre} 1 *}) |
|
203 apply(tactic {* regularize_tac @{context} 1 *}) |
|
204 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
205 apply(tactic {* clean_tac @{context} 1 *}) |
|
206 done |
|
207 |
|
208 lemma ho_tst: "foldl my_plus x [] = x" |
|
209 apply simp |
|
210 done |
|
211 |
|
212 lemma "foldl PLUS x [] = x" |
|
213 apply(tactic {* procedure_tac @{context} @{thm ho_tst} 1 *}) |
|
214 apply(tactic {* regularize_tac @{context} 1 *}) |
|
215 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
216 apply(tactic {* clean_tac @{context} 1 *}) |
|
217 apply(simp only: foldl_prs[OF Quotient_my_int Quotient_my_int] nil_prs[OF Quotient_my_int]) |
|
218 done |
|
219 |
|
220 lemma ho_tst2: "foldl my_plus x (h # t) \<approx> my_plus h (foldl my_plus x t)" |
|
221 sorry |
|
222 |
|
223 lemma "foldl PLUS x (h # t) = PLUS h (foldl PLUS x t)" |
|
224 apply(tactic {* procedure_tac @{context} @{thm ho_tst2} 1 *}) |
|
225 apply(tactic {* regularize_tac @{context} 1 *}) |
|
226 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
227 apply(tactic {* clean_tac @{context} 1 *}) |
|
228 apply(simp only: foldl_prs[OF Quotient_my_int Quotient_my_int] cons_prs[OF Quotient_my_int]) |
|
229 done |
|
230 |
|
231 lemma ho_tst3: "foldl f (s::nat \<times> nat) ([]::(nat \<times> nat) list) = s" |
|
232 by simp |
|
233 |
|
234 lemma "foldl f (x::my_int) ([]::my_int list) = x" |
|
235 apply(tactic {* procedure_tac @{context} @{thm ho_tst3} 1 *}) |
|
236 apply(tactic {* regularize_tac @{context} 1 *}) |
|
237 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
238 (* TODO: does not work when this is added *) |
|
239 (* apply(tactic {* lambda_prs_tac @{context} 1 *})*) |
|
240 apply(tactic {* clean_tac @{context} 1 *}) |
|
241 apply(simp only: foldl_prs[OF Quotient_my_int Quotient_my_int] nil_prs[OF Quotient_my_int]) |
|
242 done |
|
243 |
|
244 lemma lam_tst: "(\<lambda>x. (x, x)) y = (y, (y :: nat \<times> nat))" |
|
245 by simp |
|
246 |
|
247 lemma "(\<lambda>x. (x, x)) (y::my_int) = (y, y)" |
|
248 apply(tactic {* procedure_tac @{context} @{thm lam_tst} 1 *}) |
|
249 apply(tactic {* regularize_tac @{context} 1 *}) |
|
250 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
251 apply(tactic {* clean_tac @{context} 1 *}) |
|
252 apply(simp add: pair_prs) |
|
253 done |
|
254 |
|
255 lemma lam_tst2: "(\<lambda>(y :: nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat). x)" |
|
256 by simp |
|
257 |
|
258 |
|
259 |
|
260 |
|
261 lemma "(\<lambda>(y :: my_int). y) = (\<lambda>(x :: my_int). x)" |
|
262 apply(tactic {* procedure_tac @{context} @{thm lam_tst2} 1 *}) |
|
263 defer |
|
264 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
265 (*apply(tactic {* lambda_prs_tac @{context} 1 *})*) |
|
266 sorry |
|
267 |
|
268 lemma lam_tst3: "(\<lambda>(y :: nat \<times> nat \<Rightarrow> nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat \<Rightarrow> nat \<times> nat). x)" |
|
269 by auto |
|
270 |
|
271 lemma "(\<lambda>(y :: my_int \<Rightarrow> my_int). y) = (\<lambda>(x :: my_int \<Rightarrow> my_int). x)" |
|
272 apply(tactic {* procedure_tac @{context} @{thm lam_tst3} 1 *}) |
|
273 defer |
|
274 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
275 apply(tactic {* lambda_prs_tac @{context} 1 *}) |
|
276 sorry |