1 header {* Constant definitions *} |
|
2 |
|
3 theory Consts imports Utils begin |
|
4 |
|
5 fun Umn :: "nat \<Rightarrow> nat \<Rightarrow> lam" |
|
6 where |
|
7 [simp del]: "Umn 0 n = \<integral>(cn 0). Var (cn n)" |
|
8 | [simp del]: "Umn (Suc m) n = \<integral>(cn (Suc m)). Umn m n" |
|
9 |
|
10 lemma [simp]: "2 = Suc 1" |
|
11 by auto |
|
12 |
|
13 lemma split_lemma: |
|
14 "(a = b \<and> X) \<or> (a \<noteq> b \<and> Y) \<longleftrightarrow> (a = b \<longrightarrow> X) \<and> (a \<noteq> b \<longrightarrow> Y)" |
|
15 by blast |
|
16 |
|
17 lemma Lam_U: |
|
18 assumes "x \<noteq> y" "y \<noteq> z" "x \<noteq> z" |
|
19 shows "Umn 2 0 = \<integral>x. \<integral>y. \<integral>z. Var z" |
|
20 "Umn 2 1 = \<integral>x. \<integral>y. \<integral>z. Var y" |
|
21 "Umn 2 2 = \<integral>x. \<integral>y. \<integral>z. Var x" |
|
22 apply (simp_all add: Umn.simps Abs1_eq_iff lam.fresh fresh_at_base flip_def[symmetric] Umn.simps cnd permute_flip_at assms assms[symmetric] split_lemma) |
|
23 apply (intro impI conjI) |
|
24 apply (metis assms)+ |
|
25 done |
|
26 |
|
27 lemma supp_U1: "n \<le> m \<Longrightarrow> atom (cn n) \<notin> supp (Umn m n)" |
|
28 by (induct m) |
|
29 (auto simp add: lam.supp supp_at_base Umn.simps le_Suc_eq) |
|
30 |
|
31 lemma supp_U2: "supp (Umn m n) \<subseteq> {atom (cn n)}" |
|
32 by (induct m) (auto simp add: lam.supp supp_at_base Umn.simps) |
|
33 |
|
34 lemma supp_U[simp]: "n \<le> m \<Longrightarrow> supp (Umn m n) = {}" |
|
35 using supp_U1 supp_U2 |
|
36 by blast |
|
37 |
|
38 lemma U_eqvt: |
|
39 "n \<le> m \<Longrightarrow> p \<bullet> (Umn m n) = Umn m n" |
|
40 by (rule_tac [!] perm_supp_eq) (simp_all add: fresh_star_def fresh_def) |
|
41 |
|
42 definition VAR where "VAR \<equiv> \<integral>cx. \<integral>cy. (Var cy \<cdot> (Umn 2 2) \<cdot> Var cx \<cdot> Var cy)" |
|
43 definition "APP \<equiv> \<integral>cx. \<integral>cy. \<integral>cz. (Var cz \<cdot> Umn 2 1 \<cdot> Var cx \<cdot> Var cy \<cdot> Var cz)" |
|
44 definition "Abs \<equiv> \<integral>cx. \<integral>cy. (Var cy \<cdot> Umn 2 0 \<cdot> Var cx \<cdot> Var cy)" |
|
45 |
|
46 lemma VAR_APP_Abs: |
|
47 "x \<noteq> e \<Longrightarrow> VAR = \<integral>x. \<integral>e. (Var e \<cdot> Umn 2 2 \<cdot> Var x \<cdot> Var e)" |
|
48 "e \<noteq> x \<Longrightarrow> e \<noteq> y \<Longrightarrow> x \<noteq> y \<Longrightarrow> APP = \<integral>x. \<integral>y. \<integral>e. (Var e \<cdot> Umn 2 1 \<cdot> Var x \<cdot> Var y \<cdot> Var e)" |
|
49 "x \<noteq> e \<Longrightarrow> Abs = \<integral>x. \<integral>e. (Var e \<cdot> Umn 2 0 \<cdot> Var x \<cdot> Var e)" |
|
50 unfolding VAR_def APP_def Abs_def |
|
51 by (simp_all add: Abs1_eq_iff lam.fresh flip_def[symmetric] U_eqvt fresh_def lam.supp supp_at_base split_lemma permute_flip_at) |
|
52 (auto simp only: cx_cy_cz cx_cy_cz[symmetric]) |
|
53 |
|
54 lemma VAR_app: |
|
55 "VAR \<cdot> x \<cdot> e \<approx> e \<cdot> Umn 2 2 \<cdot> x \<cdot> e" |
|
56 by (rule lam2_fast_app[OF VAR_APP_Abs(1)]) simp_all |
|
57 |
|
58 lemma APP_app: |
|
59 "APP \<cdot> x \<cdot> y \<cdot> e \<approx> e \<cdot> Umn 2 1 \<cdot> x \<cdot> y \<cdot> e" |
|
60 by (rule lam3_fast_app[OF VAR_APP_Abs(2)]) (simp_all) |
|
61 |
|
62 lemma Abs_app: |
|
63 "Abs \<cdot> x \<cdot> e \<approx> e \<cdot> Umn 2 0 \<cdot> x \<cdot> e" |
|
64 by (rule lam2_fast_app[OF VAR_APP_Abs(3)]) simp_all |
|
65 |
|
66 lemma supp_VAR_APP_Abs[simp]: |
|
67 "supp VAR = {}" "supp APP = {}" "supp Abs = {}" |
|
68 by (simp_all add: VAR_def APP_def Abs_def lam.supp supp_at_base) blast+ |
|
69 |
|
70 lemma VAR_APP_Abs_eqvt[eqvt]: |
|
71 "p \<bullet> VAR = VAR" "p \<bullet> APP = APP" "p \<bullet> Abs = Abs" |
|
72 by (rule_tac [!] perm_supp_eq) (simp_all add: fresh_star_def fresh_def) |
|
73 |
|
74 nominal_primrec |
|
75 Numeral :: "lam \<Rightarrow> lam" ("\<lbrace>_\<rbrace>" 1000) |
|
76 where |
|
77 "\<lbrace>Var x\<rbrace> = VAR \<cdot> (Var x)" |
|
78 | Ap: "\<lbrace>M \<cdot> N\<rbrace> = APP \<cdot> \<lbrace>M\<rbrace> \<cdot> \<lbrace>N\<rbrace>" |
|
79 | "\<lbrace>\<integral>x. M\<rbrace> = Abs \<cdot> (\<integral>x. \<lbrace>M\<rbrace>)" |
|
80 proof auto |
|
81 fix x :: lam and P |
|
82 assume "\<And>xa. x = Var xa \<Longrightarrow> P" "\<And>M N. x = M \<cdot> N \<Longrightarrow> P" "\<And>xa M. x = \<integral> xa. M \<Longrightarrow> P" |
|
83 then show "P" |
|
84 by (rule_tac y="x" and c="0 :: perm" in lam.strong_exhaust) |
|
85 (auto simp add: Abs1_eq_iff fresh_star_def)[3] |
|
86 next |
|
87 fix x :: name and M and xa :: name and Ma |
|
88 assume "[[atom x]]lst. M = [[atom xa]]lst. Ma" |
|
89 "eqvt_at Numeral_sumC M" |
|
90 then show "[[atom x]]lst. Numeral_sumC M = [[atom xa]]lst. Numeral_sumC Ma" |
|
91 apply - |
|
92 apply (erule Abs_lst1_fcb) |
|
93 apply (simp_all add: Abs_fresh_iff) |
|
94 apply (erule fresh_eqvt_at) |
|
95 apply (simp_all add: finite_supp Abs1_eq_iff eqvt_at_def) |
|
96 done |
|
97 next |
|
98 show "eqvt Numeral_graph" unfolding eqvt_def Numeral_graph_def |
|
99 by (rule, perm_simp, rule) |
|
100 qed |
|
101 |
|
102 termination (eqvt) by lexicographic_order |
|
103 |
|
104 lemma supp_numeral[simp]: |
|
105 "supp \<lbrace>x\<rbrace> = supp x" |
|
106 by (induct x rule: lam.induct) |
|
107 (simp_all add: lam.supp) |
|
108 |
|
109 lemma fresh_numeral[simp]: |
|
110 "x \<sharp> \<lbrace>y\<rbrace> = x \<sharp> y" |
|
111 unfolding fresh_def by simp |
|
112 |
|
113 fun app_lst :: "name \<Rightarrow> lam list \<Rightarrow> lam" where |
|
114 "app_lst n [] = Var n" |
|
115 | "app_lst n (h # t) = (app_lst n t) \<cdot> h" |
|
116 |
|
117 lemma app_lst_eqvt[eqvt]: "p \<bullet> (app_lst t ts) = app_lst (p \<bullet> t) (p \<bullet> ts)" |
|
118 by (induct ts arbitrary: t p) (simp_all add: eqvts) |
|
119 |
|
120 lemma supp_app_lst: "supp (app_lst x l) = {atom x} \<union> supp l" |
|
121 apply (induct l) |
|
122 apply (simp_all add: supp_Nil lam.supp supp_at_base supp_Cons) |
|
123 by blast |
|
124 |
|
125 lemma app_lst_eq_iff: "app_lst n M = app_lst n N \<Longrightarrow> M = N" |
|
126 by (induct M N rule: list_induct2') simp_all |
|
127 |
|
128 lemma app_lst_rev_eq_iff: "app_lst n (rev M) = app_lst n (rev N) \<Longrightarrow> M = N" |
|
129 by (drule app_lst_eq_iff) simp |
|
130 |
|
131 nominal_primrec |
|
132 Ltgt :: "lam list \<Rightarrow> lam" ("\<guillemotleft>_\<guillemotright>" 1000) |
|
133 where |
|
134 [simp del]: "atom x \<sharp> l \<Longrightarrow> \<guillemotleft>l\<guillemotright> = \<integral>x. (app_lst x (rev l))" |
|
135 unfolding eqvt_def Ltgt_graph_def |
|
136 apply (rule, perm_simp, rule, rule) |
|
137 apply (rule_tac x="x" and ?'a="name" in obtain_fresh) |
|
138 apply (simp_all add: Abs1_eq_iff lam.fresh swap_fresh_fresh fresh_at_base) |
|
139 apply (simp add: eqvts swap_fresh_fresh) |
|
140 apply (case_tac "x = xa") |
|
141 apply simp_all |
|
142 apply (subgoal_tac "eqvt app_lst") |
|
143 apply (erule fresh_fun_eqvt_app2) |
|
144 apply (simp_all add: fresh_at_base lam.fresh eqvt_def eqvts_raw fresh_rev) |
|
145 done |
|
146 |
|
147 termination (eqvt) by lexicographic_order |
|
148 |
|
149 lemma ltgt_eq_iff[simp]: |
|
150 "\<guillemotleft>M\<guillemotright> = \<guillemotleft>N\<guillemotright> \<longleftrightarrow> M = N" |
|
151 proof auto |
|
152 obtain x :: name where "atom x \<sharp> (M, N)" using obtain_fresh by auto |
|
153 then have *: "atom x \<sharp> M" "atom x \<sharp> N" using fresh_Pair by simp_all |
|
154 then show "(\<guillemotleft>M\<guillemotright> = \<guillemotleft>N\<guillemotright>) \<Longrightarrow> (M = N)" by (simp add: Abs1_eq_iff app_lst_rev_eq_iff Ltgt.simps) |
|
155 qed |
|
156 |
|
157 lemma Ltgt1_app: "\<guillemotleft>[M]\<guillemotright> \<cdot> N \<approx> N \<cdot> M" |
|
158 proof - |
|
159 obtain x :: name where "atom x \<sharp> (M, N)" using obtain_fresh by auto |
|
160 then have "atom x \<sharp> M" "atom x \<sharp> N" using fresh_Pair by simp_all |
|
161 then show ?thesis |
|
162 apply (subst Ltgt.simps) |
|
163 apply (simp add: fresh_Cons fresh_Nil) |
|
164 apply (rule b3, rule bI, simp add: b1) |
|
165 done |
|
166 qed |
|
167 |
|
168 lemma Ltgt3_app: "\<guillemotleft>[M,N,P]\<guillemotright> \<cdot> R \<approx> R \<cdot> M \<cdot> N \<cdot> P" |
|
169 proof - |
|
170 obtain x :: name where "atom x \<sharp> (M, N, P, R)" using obtain_fresh by auto |
|
171 then have *: "atom x \<sharp> (M,N,P)" "atom x \<sharp> R" using fresh_Pair by simp_all |
|
172 then have s: "Var x \<cdot> M \<cdot> N \<cdot> P [x ::= R] \<approx> R \<cdot> M \<cdot> N \<cdot> P" using b1 by simp |
|
173 show ?thesis using * |
|
174 apply (subst Ltgt.simps) |
|
175 apply (simp add: fresh_Cons fresh_Nil fresh_Pair_elim) |
|
176 apply auto[1] |
|
177 apply (rule b3, rule bI, simp add: b1) |
|
178 done |
|
179 qed |
|
180 |
|
181 lemma supp_ltgt[simp]: |
|
182 "supp \<guillemotleft>t\<guillemotright> = supp t" |
|
183 proof - |
|
184 obtain x :: name where *:"atom x \<sharp> t" using obtain_fresh by auto |
|
185 show ?thesis using * |
|
186 by (simp_all add: Ltgt.simps lam.supp supp_at_base supp_Nil supp_app_lst supp_rev fresh_def) |
|
187 qed |
|
188 |
|
189 lemma fresh_ltgt[simp]: |
|
190 "x \<sharp> \<guillemotleft>[y]\<guillemotright> = x \<sharp> y" |
|
191 "x \<sharp> \<guillemotleft>[t,r,s]\<guillemotright> = x \<sharp> (t,r,s)" |
|
192 by (simp_all add: fresh_def supp_Cons supp_Nil supp_Pair) |
|
193 |
|
194 lemma Ltgt1_subst[simp]: |
|
195 "\<guillemotleft>[M]\<guillemotright> [y ::= A] = \<guillemotleft>[M [y ::= A]]\<guillemotright>" |
|
196 proof - |
|
197 obtain x :: name where a: "atom x \<sharp> (M, A, y, M [y ::= A])" using obtain_fresh by blast |
|
198 have "x \<noteq> y" using a[simplified fresh_Pair fresh_at_base] by simp |
|
199 then show ?thesis |
|
200 apply (subst Ltgt.simps) |
|
201 using a apply (simp add: fresh_Nil fresh_Cons fresh_Pair_elim) |
|
202 apply (subst Ltgt.simps) |
|
203 using a apply (simp add: fresh_Pair_elim fresh_Nil fresh_Cons) |
|
204 apply (simp add: a) |
|
205 done |
|
206 qed |
|
207 |
|
208 lemma U_app: |
|
209 "\<guillemotleft>[A,B,C]\<guillemotright> \<cdot> Umn 2 2 \<approx> A" "\<guillemotleft>[A,B,C]\<guillemotright> \<cdot> Umn 2 1 \<approx> B" "\<guillemotleft>[A,B,C]\<guillemotright> \<cdot> Umn 2 0 \<approx> C" |
|
210 by (rule b3, rule Ltgt3_app, rule lam3_fast_app, rule Lam_U, simp_all) |
|
211 (rule b3, rule Ltgt3_app, rule lam3_fast_app, rule Lam_U[simplified], simp_all)+ |
|
212 |
|
213 definition "F1 \<equiv> \<integral>cx. (APP \<cdot> \<lbrace>VAR\<rbrace> \<cdot> (VAR \<cdot> Var cx))" |
|
214 definition "F2 \<equiv> \<integral>cx. \<integral>cy. \<integral>cz. ((APP \<cdot> (APP \<cdot> \<lbrace>APP\<rbrace> \<cdot> (Var cz \<cdot> Var cx))) \<cdot> (Var cz \<cdot> Var cy))" |
|
215 definition "F3 \<equiv> \<integral>cx. \<integral>cy. (APP \<cdot> \<lbrace>Abs\<rbrace> \<cdot> (Abs \<cdot> (\<integral>cz. (Var cy \<cdot> (Var cx \<cdot> Var cz)))))" |
|
216 |
|
217 |
|
218 lemma Lam_F: |
|
219 "F1 = \<integral>x. (APP \<cdot> \<lbrace>VAR\<rbrace> \<cdot> (VAR \<cdot> Var x))" |
|
220 "a \<noteq> b \<Longrightarrow> a \<noteq> c \<Longrightarrow> c \<noteq> b \<Longrightarrow> F2 = \<integral>a. \<integral>b. \<integral>c. ((APP \<cdot> (APP \<cdot> \<lbrace>APP\<rbrace> \<cdot> (Var c \<cdot> Var a))) \<cdot> (Var c \<cdot> Var b))" |
|
221 "a \<noteq> b \<Longrightarrow> a \<noteq> x \<Longrightarrow> x \<noteq> b \<Longrightarrow> F3 = \<integral>a. \<integral>b. (APP \<cdot> \<lbrace>Abs\<rbrace> \<cdot> (Abs \<cdot> (\<integral>x. (Var b \<cdot> (Var a \<cdot> Var x)))))" |
|
222 by (simp_all add: F1_def F2_def F3_def Abs1_eq_iff lam.fresh supp_at_base VAR_APP_Abs_eqvt Numeral.eqvt flip_def[symmetric] fresh_at_base split_lemma permute_flip_at) |
|
223 (auto simp add: cx_cy_cz cx_cy_cz[symmetric]) |
|
224 |
|
225 lemma supp_F[simp]: |
|
226 "supp F1 = {}" "supp F2 = {}" "supp F3 = {}" |
|
227 by (simp_all add: F1_def F2_def F3_def lam.supp supp_at_base) |
|
228 blast+ |
|
229 |
|
230 lemma F_eqvt[eqvt]: |
|
231 "p \<bullet> F1 = F1" "p \<bullet> F2 = F2" "p \<bullet> F3 = F3" |
|
232 by (rule_tac [!] perm_supp_eq) |
|
233 (simp_all add: fresh_star_def fresh_def) |
|
234 |
|
235 lemma F_app: |
|
236 "F1 \<cdot> A \<approx> APP \<cdot> \<lbrace>VAR\<rbrace> \<cdot> (VAR \<cdot> A)" |
|
237 "F2 \<cdot> A \<cdot> B \<cdot> C \<approx> (APP \<cdot> (APP \<cdot> \<lbrace>APP\<rbrace> \<cdot> (C \<cdot> A))) \<cdot> (C \<cdot> B)" |
|
238 by (rule lam1_fast_app, rule Lam_F, simp_all) |
|
239 (rule lam3_fast_app, rule Lam_F, simp_all) |
|
240 |
|
241 lemma F3_app: |
|
242 assumes f: "atom x \<sharp> A" "atom x \<sharp> B" (* or A and B have empty support *) |
|
243 shows "F3 \<cdot> A \<cdot> B \<approx> APP \<cdot> \<lbrace>Abs\<rbrace> \<cdot> (Abs \<cdot> (\<integral>x. (B \<cdot> (A \<cdot> Var x))))" |
|
244 proof - |
|
245 obtain y :: name where b: "atom y \<sharp> (x, A, B)" using obtain_fresh by blast |
|
246 obtain z :: name where c: "atom z \<sharp> (x, y, A, B)" using obtain_fresh by blast |
|
247 have *: "x \<noteq> z" "x \<noteq> y" "y \<noteq> z" |
|
248 using b c by (simp_all add: fresh_Pair fresh_at_base) blast+ |
|
249 have **: |
|
250 "atom y \<sharp> z" "atom x \<sharp> z" "atom y \<sharp> x" |
|
251 "atom z \<sharp> y" "atom z \<sharp> x" "atom x \<sharp> y" |
|
252 "atom x \<sharp> A" "atom y \<sharp> A" "atom z \<sharp> A" |
|
253 "atom x \<sharp> B" "atom y \<sharp> B" "atom z \<sharp> B" |
|
254 using b c f by (simp_all add: fresh_Pair fresh_at_base) blast+ |
|
255 show ?thesis |
|
256 apply (simp add: Lam_F(3)[of y z x] * *[symmetric]) |
|
257 apply (rule b3) apply (rule b5) apply (rule bI) |
|
258 apply (simp add: ** fresh_Pair * *[symmetric]) |
|
259 apply (rule b3) apply (rule bI) |
|
260 apply (simp add: ** fresh_Pair * *[symmetric]) |
|
261 apply (rule b1) |
|
262 done |
|
263 qed |
|
264 |
|
265 definition Lam_A1_pre : "A1 \<equiv> \<integral>cx. \<integral>cy. (F1 \<cdot> Var cx)" |
|
266 definition Lam_A2_pre : "A2 \<equiv> \<integral>cx. \<integral>cy. \<integral>cz. (F2 \<cdot> Var cx \<cdot> Var cy \<cdot> \<guillemotleft>[Var cz]\<guillemotright>)" |
|
267 definition Lam_A3_pre : "A3 \<equiv> \<integral>cx. \<integral>cy. (F3 \<cdot> Var cx \<cdot> \<guillemotleft>[Var cy]\<guillemotright>)" |
|
268 lemma Lam_A: |
|
269 "x \<noteq> y \<Longrightarrow> A1 = \<integral>x. \<integral>y. (F1 \<cdot> Var x)" |
|
270 "a \<noteq> b \<Longrightarrow> a \<noteq> c \<Longrightarrow> c \<noteq> b \<Longrightarrow> A2 = \<integral>a. \<integral>b. \<integral>c. (F2 \<cdot> Var a \<cdot> Var b \<cdot> \<guillemotleft>[Var c]\<guillemotright>)" |
|
271 "a \<noteq> b \<Longrightarrow> A3 = \<integral>a. \<integral>b. (F3 \<cdot> Var a \<cdot> \<guillemotleft>[Var b]\<guillemotright>)" |
|
272 by (simp_all add: Lam_A1_pre Lam_A2_pre Lam_A3_pre Abs1_eq_iff lam.fresh supp_at_base VAR_APP_Abs_eqvt Numeral.eqvt flip_def[symmetric] fresh_at_base F_eqvt Ltgt.eqvt split_lemma permute_flip_at cx_cy_cz cx_cy_cz[symmetric]) |
|
273 auto |
|
274 |
|
275 lemma supp_A[simp]: |
|
276 "supp A1 = {}" "supp A2 = {}" "supp A3 = {}" |
|
277 by (auto simp add: Lam_A1_pre Lam_A2_pre Lam_A3_pre lam.supp supp_at_base supp_Cons supp_Nil) |
|
278 |
|
279 lemma A_app: |
|
280 "A1 \<cdot> A \<cdot> B \<approx> F1 \<cdot> A" |
|
281 "A2 \<cdot> A \<cdot> B \<cdot> C \<approx> F2 \<cdot> A \<cdot> B \<cdot> \<guillemotleft>[C]\<guillemotright>" |
|
282 "A3 \<cdot> A \<cdot> B \<approx> F3 \<cdot> A \<cdot> \<guillemotleft>[B]\<guillemotright>" |
|
283 apply (rule lam2_fast_app, rule Lam_A, simp_all) |
|
284 apply (rule lam3_fast_app, rule Lam_A, simp_all) |
|
285 apply (rule lam2_fast_app, rule Lam_A, simp_all) |
|
286 done |
|
287 |
|
288 definition "Num \<equiv> \<guillemotleft>[\<guillemotleft>[A1,A2,A3]\<guillemotright>]\<guillemotright>" |
|
289 |
|
290 lemma supp_Num[simp]: |
|
291 "supp Num = {}" |
|
292 by (auto simp only: Num_def supp_ltgt supp_Pair supp_A supp_Cons supp_Nil) |
|
293 |
|
294 end |
|