Nominal/Ex/NBE.thy
branchNominal2-Isabelle2012
changeset 3170 89715c48f728
parent 3169 b6873d123f9b
child 3171 f5057aabf5c0
equal deleted inserted replaced
3169:b6873d123f9b 3170:89715c48f728
     1 theory Lambda
       
     2 imports 
       
     3   "../Nominal2"
       
     4 begin
       
     5 
       
     6 
       
     7 atom_decl name
       
     8 
       
     9 nominal_datatype lam =
       
    10   Var "name"
       
    11 | App "lam" "lam"
       
    12 | Lam x::"name" l::"lam"  binds x in l ("Lam [_]. _" [100, 100] 100)
       
    13 
       
    14 nominal_datatype sem =
       
    15   L e::"env" x::"name" l::"lam" binds x "bn e" in l
       
    16 | N "neu"
       
    17 and neu = 
       
    18   V "name"
       
    19 | A "neu" "sem"
       
    20 and env =
       
    21   ENil
       
    22 | ECons "env" "name" "sem"
       
    23 binder
       
    24   bn
       
    25 where
       
    26   "bn ENil = []"
       
    27 | "bn (ECons env x v) = (atom x) # (bn env)"
       
    28 
       
    29 thm sem_neu_env.supp
       
    30 
       
    31 lemma [simp]:
       
    32   shows "finite (fv_bn env)"
       
    33 apply(induct env rule: sem_neu_env.inducts(3))
       
    34 apply(rule TrueI)+
       
    35 apply(auto simp add: sem_neu_env.supp finite_supp)
       
    36 done
       
    37 
       
    38 lemma test1:
       
    39   shows "supp p \<sharp>* (fv_bn env) \<Longrightarrow> (p \<bullet> env) = permute_bn p env"
       
    40 apply(induct env rule: sem_neu_env.inducts(3))
       
    41 apply(rule TrueI)+
       
    42 apply(auto simp add: sem_neu_env.perm_bn_simps sem_neu_env.supp)
       
    43 apply(drule meta_mp)
       
    44 apply(drule fresh_star_supp_conv)
       
    45 apply(subst (asm) supp_finite_atom_set)
       
    46 apply(simp add: finite_supp)
       
    47 apply(simp add: fresh_star_Un)
       
    48 apply(rule fresh_star_supp_conv)
       
    49 apply(subst supp_finite_atom_set)
       
    50 apply(simp)
       
    51 apply(simp)
       
    52 apply(simp)
       
    53 apply(rule perm_supp_eq)
       
    54 apply(drule fresh_star_supp_conv)
       
    55 apply(subst (asm) supp_finite_atom_set)
       
    56 apply(simp add: finite_supp)
       
    57 apply(simp add: fresh_star_Un)
       
    58 apply(rule fresh_star_supp_conv)
       
    59 apply(simp)
       
    60 done
       
    61 
       
    62 thm alpha_sem_raw_alpha_neu_raw_alpha_env_raw_alpha_bn_raw.inducts(4)[no_vars]
       
    63 
       
    64 lemma alpha_bn_inducts_raw[consumes 1]:
       
    65   "\<lbrakk>alpha_bn_raw x7 x8;
       
    66   P4 ENil_raw ENil_raw;
       
    67  \<And>env_raw env_rawa sem_raw sem_rawa name namea.
       
    68     \<lbrakk>alpha_bn_raw env_raw env_rawa; P4 env_raw env_rawa; alpha_sem_raw sem_raw sem_rawa\<rbrakk>
       
    69     \<Longrightarrow> P4 (ECons_raw env_raw name sem_raw) (ECons_raw env_rawa namea sem_rawa)\<rbrakk>
       
    70 \<Longrightarrow> P4 x7 x8"
       
    71 apply(induct rule: alpha_sem_raw_alpha_neu_raw_alpha_env_raw_alpha_bn_raw.inducts(4))
       
    72 apply(rule TrueI)+
       
    73 apply(auto)
       
    74 done
       
    75 
       
    76 lemmas alpha_bn_inducts[consumes 1] = alpha_bn_inducts_raw[quot_lifted]
       
    77 
       
    78 lemma test2:
       
    79   shows "alpha_bn env1 env2 \<Longrightarrow> p \<bullet> (bn env1) = q \<bullet> (bn env2) \<Longrightarrow> permute_bn p env1 = permute_bn q env2"
       
    80 apply(induct rule: alpha_bn_inducts)
       
    81 apply(auto simp add: sem_neu_env.perm_bn_simps sem_neu_env.bn_defs)
       
    82 apply(simp add: atom_eqvt)
       
    83 done
       
    84 
       
    85 lemma fresh_star_Union:
       
    86   assumes "as \<subseteq> bs" "bs \<sharp>* x"
       
    87   shows "as \<sharp>* x"
       
    88 using assms by (auto simp add: fresh_star_def)
       
    89   
       
    90 
       
    91 nominal_primrec  (invariant "\<lambda>x y. case x of Inl (x1, y1) \<Rightarrow> 
       
    92   supp y \<subseteq> (supp y1 - set (bn x1)) \<union> (fv_bn x1) | Inr (x2, y2) \<Rightarrow> supp y \<subseteq> supp x2 \<union> supp y2")
       
    93   evals :: "env \<Rightarrow> lam \<Rightarrow> sem" and
       
    94   evals_aux :: "sem \<Rightarrow> sem \<Rightarrow> sem"
       
    95 where
       
    96   "evals ENil (Var x) = N (V x)"
       
    97 | "evals (ECons tail y v) (Var x) = (if x = y then v else evals tail (Var x))" 
       
    98 | "atom x \<sharp> env \<Longrightarrow> evals env (Lam [x]. t) = L env x t"
       
    99 | "evals env (App t1 t2) = evals_aux (evals env t1) (evals env t2)"
       
   100 | "set (atom x # bn env) \<sharp>* (fv_bn env, t') \<Longrightarrow> evals_aux (L env x t) t' = evals (ECons env x t') t"
       
   101 | "evals_aux (N n) t' = N (A n t')"
       
   102 apply(simp add: eqvt_def  evals_evals_aux_graph_def)
       
   103 apply(perm_simp)
       
   104 apply(simp)
       
   105 apply(erule evals_evals_aux_graph.induct)
       
   106 apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
       
   107 apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
       
   108 apply(rule conjI)
       
   109 apply(rule impI)
       
   110 apply(blast)
       
   111 apply(rule impI)
       
   112 apply(simp add: supp_at_base)
       
   113 apply(blast)
       
   114 apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
       
   115 apply(blast)
       
   116 apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
       
   117 apply(blast)
       
   118 apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
       
   119 apply(blast)
       
   120 apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
       
   121 --"completeness"
       
   122 apply(case_tac x)
       
   123 apply(simp)
       
   124 apply(case_tac a)
       
   125 apply(simp)
       
   126 apply(case_tac aa rule: sem_neu_env.exhaust(3))
       
   127 apply(simp add: sem_neu_env.fresh)
       
   128 apply(case_tac b rule: lam.exhaust)
       
   129 apply(metis)+
       
   130 apply(case_tac aa rule: sem_neu_env.exhaust(3))
       
   131 apply(rule_tac y="b" and c="env" in lam.strong_exhaust)
       
   132 apply(metis)+
       
   133 apply(simp add: fresh_star_def)
       
   134 apply(simp)
       
   135 apply(rule_tac y="b" and c="ECons env name sem" in lam.strong_exhaust)
       
   136 apply(metis)+
       
   137 apply(simp add: fresh_star_def)
       
   138 apply(simp)
       
   139 apply(case_tac b)
       
   140 apply(simp)
       
   141 apply(rule_tac y="a" and c="(a, ba)" in sem_neu_env.strong_exhaust(1))
       
   142 apply(simp)
       
   143 apply(rotate_tac 4)
       
   144 apply(drule_tac x="name" in meta_spec)
       
   145 apply(drule_tac x="env" in meta_spec)
       
   146 apply(drule_tac x="ba" in meta_spec)
       
   147 apply(drule_tac x="lam" in meta_spec)
       
   148 apply(simp add:  sem_neu_env.alpha_refl)
       
   149 apply(rotate_tac 9)
       
   150 apply(drule_tac meta_mp)
       
   151 apply(simp (no_asm_use) add: fresh_star_def sem_neu_env.fresh fresh_Pair)
       
   152 apply(simp)
       
   153 apply(subst fresh_finite_atom_set)
       
   154 defer
       
   155 apply(simp)
       
   156 apply(subst fresh_finite_atom_set)
       
   157 defer
       
   158 apply(simp)
       
   159 apply(metis)+
       
   160 --"compatibility"
       
   161 apply(all_trivials)
       
   162 apply(simp)
       
   163 apply(simp)
       
   164 defer
       
   165 apply(simp)
       
   166 apply(simp)
       
   167 apply (simp add: meta_eq_to_obj_eq[OF evals_def, symmetric, unfolded fun_eq_iff])
       
   168 apply (subgoal_tac "eqvt_at (\<lambda>(a, b). evals a b) (ECons env x t'a, t)")
       
   169 apply (subgoal_tac "eqvt_at (\<lambda>(a, b). evals a b) (ECons enva xa t'a, ta)")
       
   170 apply (thin_tac "eqvt_at evals_evals_aux_sumC (Inl (ECons env x t'a, t))")
       
   171 apply (thin_tac "eqvt_at evals_evals_aux_sumC (Inl (ECons enva xa t'a, ta))")
       
   172 apply(erule conjE)+
       
   173 defer
       
   174 apply (simp_all add: eqvt_at_def evals_def)[3]
       
   175 defer
       
   176 defer
       
   177 apply(simp add: sem_neu_env.alpha_refl)
       
   178 apply(erule conjE)+
       
   179 apply(erule_tac c="(env, enva)" in Abs_lst1_fcb2)
       
   180 apply(simp add: Abs_fresh_iff)
       
   181 apply(simp add: fresh_star_def)
       
   182 apply(perm_simp)
       
   183 apply(simp add: fresh_star_Pair perm_supp_eq)
       
   184 apply(perm_simp)
       
   185 apply(simp add: fresh_star_Pair perm_supp_eq)
       
   186 apply(simp add: sem_neu_env.bn_defs sem_neu_env.supp)
       
   187 using at_set_avoiding3
       
   188 apply -
       
   189 apply(drule_tac x="set (atom x # bn env)" in meta_spec)
       
   190 apply(drule_tac x="(fv_bn env, fv_bn enva, env, enva, x, xa, t, ta, t'a)" in meta_spec)
       
   191 apply(drule_tac x="[atom x # bn env]lst. t" in meta_spec)
       
   192 apply(simp (no_asm_use) add: finite_supp Abs_fresh_star_iff)
       
   193 apply(drule meta_mp)
       
   194 apply(simp add: supp_Pair finite_supp supp_finite_atom_set)
       
   195 apply(drule meta_mp)
       
   196 apply(simp add: fresh_star_def)
       
   197 apply(erule exE)
       
   198 apply(erule conjE)+
       
   199 apply(rule trans)
       
   200 apply(rule sym)
       
   201 apply(rule_tac p="p" in perm_supp_eq)
       
   202 apply(simp)
       
   203 apply(perm_simp)
       
   204 apply(simp add: fresh_star_Un fresh_star_insert)
       
   205 apply(rule conjI)
       
   206 apply(simp (no_asm_use) add: fresh_star_def fresh_Pair)
       
   207 apply(simp add: fresh_def)
       
   208 apply(simp add: supp_finite_atom_set)
       
   209 apply(blast)
       
   210 apply(rule conjI)
       
   211 apply(simp (no_asm_use) add: fresh_star_def fresh_Pair)
       
   212 apply(simp add: fresh_def)
       
   213 apply(simp add: supp_finite_atom_set)
       
   214 apply(blast)
       
   215 apply(rule conjI)
       
   216 apply(simp (no_asm_use) add: fresh_star_def fresh_Pair)
       
   217 apply(simp add: fresh_def)
       
   218 apply(simp add: supp_finite_atom_set)
       
   219 apply(blast)
       
   220 apply(simp (no_asm_use) add: fresh_star_def fresh_Pair)
       
   221 apply(simp add: fresh_def)
       
   222 apply(simp add: supp_finite_atom_set)
       
   223 apply(blast)
       
   224 apply(simp add: eqvt_at_def perm_supp_eq)
       
   225 apply(subst (3) perm_supp_eq)
       
   226 apply(simp)
       
   227 apply(simp add: fresh_star_def fresh_Pair)
       
   228 apply(auto)[1]
       
   229 apply(rotate_tac 6)
       
   230 apply(drule sym)
       
   231 apply(simp)
       
   232 apply(rotate_tac 11)
       
   233 apply(drule trans)
       
   234 apply(rule sym)
       
   235 apply(rule_tac p="p" in supp_perm_eq)
       
   236 apply(assumption)
       
   237 apply(rotate_tac 11)
       
   238 apply(rule sym)
       
   239 apply(simp add: atom_eqvt)
       
   240 apply(simp (no_asm_use) add: Abs_eq_iff2 alphas)
       
   241 apply(erule conjE | erule exE)+
       
   242 apply(rule trans)
       
   243 apply(rule sym)
       
   244 apply(rule_tac p="pa" in perm_supp_eq)
       
   245 apply(erule fresh_star_Union)
       
   246 apply(simp (no_asm_use) add: fresh_star_insert fresh_star_Un)
       
   247 apply(rule conjI)
       
   248 apply(perm_simp)
       
   249 apply(simp add: fresh_star_insert fresh_star_Un)
       
   250 apply(simp add: fresh_Pair)
       
   251 apply(simp add: fresh_def)
       
   252 apply(simp add: supp_finite_atom_set)
       
   253 apply(blast)
       
   254 apply(rule conjI)
       
   255 apply(perm_simp)
       
   256 apply(simp add: fresh_star_insert fresh_star_Un)
       
   257 apply(simp add: fresh_Pair)
       
   258 apply(simp add: fresh_def)
       
   259 apply(simp add: supp_finite_atom_set)
       
   260 apply(blast)
       
   261 apply(rule conjI)
       
   262 apply(perm_simp)
       
   263 defer
       
   264 apply(perm_simp)
       
   265 apply(simp add: fresh_star_insert fresh_star_Un)
       
   266 apply(simp add: fresh_star_Pair)
       
   267 apply(simp add: fresh_star_def fresh_def)
       
   268 apply(simp add: supp_finite_atom_set)
       
   269 apply(blast)
       
   270 apply(simp)
       
   271 apply(perm_simp)
       
   272 apply(subst (3) perm_supp_eq)
       
   273 apply(erule fresh_star_Union)
       
   274 apply(simp add: fresh_star_insert fresh_star_Un)
       
   275 apply(simp add: fresh_star_def fresh_Pair)
       
   276 apply(subgoal_tac "pa \<bullet> enva = p \<bullet> env")
       
   277 apply(simp)
       
   278 defer
       
   279 apply(simp (no_asm_use) add: fresh_star_insert fresh_star_Un)
       
   280 apply(simp (no_asm_use) add: fresh_star_def)
       
   281 apply(rule ballI)
       
   282 apply(subgoal_tac "a \<notin> supp ta - insert (atom xa) (set (bn enva)) \<union> (fv_bn enva \<union> supp t'a)")
       
   283 apply(simp only: fresh_def)
       
   284 apply(blast)
       
   285 apply(simp (no_asm_use))
       
   286 apply(rule conjI)
       
   287 apply(blast)
       
   288 apply(simp add: fresh_Pair)
       
   289 apply(simp add: fresh_star_def fresh_def)
       
   290 apply(simp add: supp_finite_atom_set)
       
   291 apply(subst test1)
       
   292 apply(erule fresh_star_Union)
       
   293 apply(simp add: fresh_star_insert fresh_star_Un)
       
   294 apply(simp add: fresh_star_def fresh_Pair)
       
   295 apply(subst test1)
       
   296 apply(simp)
       
   297 apply(simp add: fresh_star_insert fresh_star_Un)
       
   298 apply(simp add: fresh_star_def fresh_Pair)
       
   299 apply(rule sym)
       
   300 apply(erule test2)
       
   301 apply(perm_simp)
       
   302 apply(simp)
       
   303 done
       
   304 
       
   305 
       
   306 
       
   307 
       
   308 text {* can probably not proved by a trivial size argument *}
       
   309 termination (* apply(lexicographic_order) *)
       
   310 sorry
       
   311 
       
   312 lemma [eqvt]:
       
   313   shows "(p \<bullet> evals env t) = evals (p \<bullet> env) (p \<bullet> t)"
       
   314   and "(p \<bullet> evals_aux v s) = evals_aux (p \<bullet> v) (p \<bullet> s)"
       
   315 sorry
       
   316 
       
   317 (* fixme: should be a provided lemma *)
       
   318 lemma fv_bn_finite:
       
   319   shows "finite (fv_bn env)"
       
   320 apply(induct env rule: sem_neu_env.inducts(3))
       
   321 apply(auto simp add: sem_neu_env.supp finite_supp)
       
   322 done
       
   323 
       
   324 lemma test:
       
   325   fixes env::"env"
       
   326   shows "supp (evals env t) \<subseteq> (supp t - set (bn env)) \<union> (fv_bn env)"
       
   327   and "supp (evals_aux s v) \<subseteq> (supp s) \<union> (supp v)"
       
   328 apply(induct env t and s v rule: evals_evals_aux.induct)
       
   329 apply(simp add: sem_neu_env.supp lam.supp supp_Nil sem_neu_env.bn_defs)
       
   330 apply(simp add: sem_neu_env.supp lam.supp supp_Nil supp_Cons sem_neu_env.bn_defs)
       
   331 apply(rule conjI)
       
   332 apply(auto)[1]
       
   333 apply(rule impI)
       
   334 apply(simp)
       
   335 apply(simp add: supp_at_base)
       
   336 apply(blast)
       
   337 apply(simp)
       
   338 apply(subst sem_neu_env.supp)
       
   339 apply(simp add: sem_neu_env.supp lam.supp)
       
   340 apply(auto)[1]
       
   341 apply(simp add: lam.supp sem_neu_env.supp)
       
   342 apply(blast)
       
   343 apply(simp add: sem_neu_env.supp sem_neu_env.bn_defs)
       
   344 apply(blast)
       
   345 apply(simp add: sem_neu_env.supp)
       
   346 done
       
   347 
       
   348 
       
   349 nominal_primrec
       
   350   reify :: "sem \<Rightarrow> lam" and
       
   351   reifyn :: "neu \<Rightarrow> lam"
       
   352 where
       
   353   "atom x \<sharp> (env, y, t) \<Longrightarrow> reify (L env y t) = Lam [x]. (reify (evals (ECons env y (N (V x))) t))"
       
   354 | "reify (N n) = reifyn n"
       
   355 | "reifyn (V x) = Var x"
       
   356 | "reifyn (A n d) = App (reifyn n) (reify d)"
       
   357 apply(subgoal_tac "\<And>p x y. reify_reifyn_graph x y \<Longrightarrow> reify_reifyn_graph (p \<bullet> x) (p \<bullet> y)")
       
   358 apply(simp add: eqvt_def)
       
   359 apply(simp add: permute_fun_def)
       
   360 apply(rule allI)
       
   361 apply(rule ext)
       
   362 apply(rule ext)
       
   363 apply(rule iffI)
       
   364 apply(drule_tac x="p" in meta_spec)
       
   365 apply(drule_tac x="- p \<bullet> x" in meta_spec)
       
   366 apply(drule_tac x="- p \<bullet> xa" in meta_spec)
       
   367 apply(simp add: permute_bool_def)
       
   368 apply(simp add: permute_bool_def)
       
   369 apply(erule reify_reifyn_graph.induct)
       
   370 apply(perm_simp)
       
   371 apply(rule reify_reifyn_graph.intros)
       
   372 apply(rule_tac p="-p" in permute_boolE)
       
   373 apply(perm_simp add: permute_minus_cancel)
       
   374 apply(simp)
       
   375 apply(simp)
       
   376 apply(perm_simp)
       
   377 apply(rule reify_reifyn_graph.intros)
       
   378 apply(simp)
       
   379 apply(perm_simp)
       
   380 apply(rule reify_reifyn_graph.intros)
       
   381 apply(perm_simp)
       
   382 apply(rule reify_reifyn_graph.intros)
       
   383 apply(simp)
       
   384 apply(simp)
       
   385 apply(rule TrueI)
       
   386 --"completeness"
       
   387 apply(case_tac x)
       
   388 apply(simp)
       
   389 apply(case_tac a rule: sem_neu_env.exhaust(1))
       
   390 apply(subgoal_tac "\<exists>x::name. atom x \<sharp> (env, name, lam)")
       
   391 apply(metis)
       
   392 apply(rule obtain_fresh)
       
   393 apply(blast)
       
   394 apply(blast)
       
   395 apply(case_tac b rule: sem_neu_env.exhaust(2))
       
   396 apply(simp)
       
   397 apply(simp)
       
   398 apply(metis)
       
   399 --"compatibility"
       
   400 apply(all_trivials)
       
   401 defer
       
   402 apply(simp)
       
   403 apply(simp)
       
   404 apply(simp)
       
   405 apply(erule conjE)
       
   406 apply (simp add: meta_eq_to_obj_eq[OF reify_def, symmetric, unfolded fun_eq_iff])
       
   407 apply (subgoal_tac "eqvt_at (\<lambda>t. reify t) (evals (ECons env y (N (V x))) t)")
       
   408 apply (subgoal_tac "eqvt_at (\<lambda>t. reify t) (evals (ECons enva ya (N (V xa))) ta)")
       
   409 apply (thin_tac "eqvt_at reify_reifyn_sumC (Inl (evals (ECons env y (N (V x))) t))")
       
   410 apply (thin_tac "eqvt_at reify_reifyn_sumC (Inl (evals (ECons enva ya (N (V xa))) ta))")
       
   411 defer
       
   412 apply (simp_all add: eqvt_at_def reify_def)[2]
       
   413 apply(subgoal_tac "\<exists>c::name. atom c \<sharp> (x, xa, env, enva, y, ya, t, ta)")
       
   414 prefer 2
       
   415 apply(rule obtain_fresh)
       
   416 apply(blast)
       
   417 apply(erule exE)
       
   418 apply(rule trans)
       
   419 apply(rule sym)
       
   420 apply(rule_tac a="x" and b="c" in flip_fresh_fresh)
       
   421 apply(simp add: Abs_fresh_iff)
       
   422 apply(simp add: Abs_fresh_iff fresh_Pair)
       
   423 apply(auto)[1]
       
   424 apply(rule fresh_eqvt_at)
       
   425 back
       
   426 apply(assumption)
       
   427 apply(simp add: finite_supp)
       
   428 apply(rule_tac S="supp (env, y, x, t)" in supports_fresh)
       
   429 apply(simp add: supports_def fresh_def[symmetric])
       
   430 apply(perm_simp)
       
   431 apply(simp add: swap_fresh_fresh fresh_Pair)
       
   432 apply(simp add: finite_supp)
       
   433 apply(simp add: fresh_def[symmetric])
       
   434 apply(simp add: eqvt_at_def)
       
   435 apply(simp add: eqvt_at_def[symmetric])
       
   436 apply(perm_simp)
       
   437 apply(simp add: flip_fresh_fresh)
       
   438 apply(rule sym)
       
   439 apply(rule trans)
       
   440 apply(rule sym)
       
   441 apply(rule_tac a="xa" and b="c" in flip_fresh_fresh)
       
   442 apply(simp add: Abs_fresh_iff)
       
   443 apply(simp add: Abs_fresh_iff fresh_Pair)
       
   444 apply(auto)[1]
       
   445 apply(rule fresh_eqvt_at)
       
   446 back
       
   447 apply(assumption)
       
   448 apply(simp add: finite_supp)
       
   449 apply(rule_tac S="supp (enva, ya, xa, ta)" in supports_fresh)
       
   450 apply(simp add: supports_def fresh_def[symmetric])
       
   451 apply(perm_simp)
       
   452 apply(simp add: swap_fresh_fresh fresh_Pair)
       
   453 apply(simp add: finite_supp)
       
   454 apply(simp add: fresh_def[symmetric])
       
   455 apply(simp add: eqvt_at_def)
       
   456 apply(simp add: eqvt_at_def[symmetric])
       
   457 apply(perm_simp)
       
   458 apply(simp add: flip_fresh_fresh)
       
   459 apply(simp (no_asm) add: Abs1_eq_iff)
       
   460 (* HERE *)
       
   461 thm at_set_avoiding3
       
   462 using at_set_avoiding3
       
   463 apply -
       
   464 apply(drule_tac x="set (atom y # bn env)" in meta_spec)
       
   465 apply(drule_tac x="(env, enva)" in meta_spec)
       
   466 apply(drule_tac x="[atom y # bn env]lst. t" in meta_spec)
       
   467 apply(simp (no_asm_use) add: finite_supp)
       
   468 apply(drule meta_mp)
       
   469 apply(rule Abs_fresh_star)
       
   470 apply(auto)[1]
       
   471 apply(erule exE)
       
   472 apply(erule conjE)+
       
   473 apply(drule_tac q="(x \<leftrightarrow> c)" in eqvt_at_perm)
       
   474 apply(perm_simp)
       
   475 apply(simp add: flip_fresh_fresh fresh_Pair)
       
   476 apply(drule_tac q="(xa \<leftrightarrow> c)" in eqvt_at_perm)
       
   477 apply(perm_simp)
       
   478 apply(simp add: flip_fresh_fresh fresh_Pair)
       
   479 apply(drule sym)
       
   480 (* HERE *)
       
   481 apply(rotate_tac 9)
       
   482 apply(drule sym)
       
   483 apply(rotate_tac 9)
       
   484 apply(drule trans)
       
   485 apply(rule sym)
       
   486 apply(rule_tac p="p" in supp_perm_eq)
       
   487 apply(assumption)
       
   488 apply(simp)
       
   489 apply(perm_simp)
       
   490 apply(simp (no_asm_use) add: Abs_eq_iff2 alphas)
       
   491 apply(erule conjE | erule exE)+
       
   492 apply(clarify)
       
   493 apply(rule trans)
       
   494 apply(rule sym)
       
   495 apply(rule_tac p="pa" in perm_supp_eq)
       
   496 defer
       
   497 apply(rule sym)
       
   498 apply(rule trans)
       
   499 apply(rule sym)
       
   500 apply(rule_tac p="p" in perm_supp_eq)
       
   501 defer
       
   502 apply(simp add: atom_eqvt)
       
   503 apply(drule_tac q="(x \<leftrightarrow> c)" in eqvt_at_perm)
       
   504 apply(perm_simp)
       
   505 apply(simp add: flip_fresh_fresh fresh_Pair)
       
   506 
       
   507 apply(rule sym)
       
   508 apply(erule_tac Abs_lst1_fcb2')
       
   509 apply(rule fresh_eqvt_at)
       
   510 back
       
   511 apply(drule_tac q="(c \<leftrightarrow> x)" in eqvt_at_perm)
       
   512 apply(perm_simp)
       
   513 apply(simp add: flip_fresh_fresh)
       
   514 apply(simp add: finite_supp)
       
   515 apply(rule supports_fresh)
       
   516 apply(rule_tac S="supp (enva, ya, xa, ta)" in supports_fresh)
       
   517 apply(simp add: supports_def fresh_def[symmetric])
       
   518 apply(perm_simp)
       
   519 apply(simp add: swap_fresh_fresh fresh_Pair)
       
   520 apply(simp add: finite_supp)
       
   521 apply(simp add: fresh_def[symmetric])
       
   522 apply(simp add: eqvt_at_def)
       
   523 apply(simp add: eqvt_at_def[symmetric])
       
   524 apply(perm_simp)
       
   525 apply(rule fresh_eqvt_at)
       
   526 back
       
   527 apply(drule_tac q="(c \<leftrightarrow> x)" in eqvt_at_perm)
       
   528 apply(perm_simp)
       
   529 apply(simp add: flip_fresh_fresh)
       
   530 apply(assumption)
       
   531 apply(simp add: finite_supp)
       
   532 sorry
       
   533 
       
   534 termination sorry
       
   535 
       
   536 definition
       
   537   eval :: "lam \<Rightarrow> sem"
       
   538 where
       
   539   "eval t = evals ENil t"
       
   540 
       
   541 definition
       
   542   normalize :: "lam \<Rightarrow> lam"
       
   543 where
       
   544   "normalize t = reify (eval t)"
       
   545 
       
   546 end