Nominal/Term2.thy
changeset 1278 8814494fe4da
parent 1277 6eacf60ce41d
child 1288 0203cd5cfd6c
equal deleted inserted replaced
1277:6eacf60ce41d 1278:8814494fe4da
    58  |> snd o (Quotient_Def.quotient_lift_const ("fv_trm2", @{term fv_rtrm2}))
    58  |> snd o (Quotient_Def.quotient_lift_const ("fv_trm2", @{term fv_rtrm2}))
    59  |> snd o (Quotient_Def.quotient_lift_const ("bv2", @{term rbv2})))
    59  |> snd o (Quotient_Def.quotient_lift_const ("bv2", @{term rbv2})))
    60 *}
    60 *}
    61 print_theorems
    61 print_theorems
    62 
    62 
    63 local_setup {* prove_const_rsp @{binding fv_rtrm2_rsp} [@{term fv_rtrm2}, @{term fv_rassign}]
    63 local_setup {* snd o prove_const_rsp @{binding fv_rtrm2_rsp} [@{term fv_rtrm2}, @{term fv_rassign}]
    64   (fn _ => fvbv_rsp_tac @{thm alpha_rtrm2_alpha_rassign.induct} @{thms fv_rtrm2_fv_rassign.simps} 1) *}
    64   (fn _ => fvbv_rsp_tac @{thm alpha_rtrm2_alpha_rassign.induct} @{thms fv_rtrm2_fv_rassign.simps} 1) *}
    65 local_setup {* prove_const_rsp @{binding rbv2_rsp} [@{term rbv2}]
    65 local_setup {* snd o prove_const_rsp @{binding rbv2_rsp} [@{term rbv2}]
    66   (fn _ => fvbv_rsp_tac @{thm alpha_rtrm2_alpha_rassign.inducts(2)} @{thms rbv2.simps} 1) *}
    66   (fn _ => fvbv_rsp_tac @{thm alpha_rtrm2_alpha_rassign.inducts(2)} @{thms rbv2.simps} 1) *}
    67 local_setup {* prove_const_rsp @{binding rVr2_rsp} [@{term rVr2}]
    67 local_setup {* snd o prove_const_rsp @{binding rVr2_rsp} [@{term rVr2}]
    68   (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *}
    68   (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *}
    69 local_setup {* prove_const_rsp @{binding rAp2_rsp} [@{term rAp2}]
    69 local_setup {* snd o prove_const_rsp @{binding rAp2_rsp} [@{term rAp2}]
    70   (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *}
    70   (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *}
    71 local_setup {* prove_const_rsp @{binding rLm2_rsp} [@{term rLm2}]
    71 local_setup {* snd o prove_const_rsp @{binding rLm2_rsp} [@{term rLm2}]
    72   (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *}
    72   (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *}
    73 local_setup {* prove_const_rsp @{binding rLt2_rsp} [@{term rLt2}]
    73 local_setup {* snd o prove_const_rsp @{binding rLt2_rsp} [@{term rLt2}]
    74   (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp rbv2_rsp} @{thms alpha2_equivp} 1) *}
    74   (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp rbv2_rsp} @{thms alpha2_equivp} 1) *}
    75 local_setup {* prove_const_rsp @{binding permute_rtrm2_rsp} [@{term "permute :: perm \<Rightarrow> rtrm2 \<Rightarrow> rtrm2"}]
    75 local_setup {* snd o prove_const_rsp @{binding permute_rtrm2_rsp} [@{term "permute :: perm \<Rightarrow> rtrm2 \<Rightarrow> rtrm2"}]
    76   (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha2_eqvt}) 1) *}
    76   (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha2_eqvt}) 1) *}
    77 
    77 
    78 end
    78 end