Nominal/Ex/Lambda.thy
changeset 2301 8732ff59068b
parent 2173 477293d841e8
child 2311 4da5c5c29009
equal deleted inserted replaced
2300:9fb315392493 2301:8732ff59068b
     1 theory Lambda
     1 theory Lambda
     2 imports "../NewParser"
     2 imports "../NewParser" Quotient_Option
     3 begin
     3 begin
     4 
     4 
     5 atom_decl name
     5 atom_decl name
     6 
     6 
     7 nominal_datatype lam =
     7 nominal_datatype lam =
   454 ML {*
   454 ML {*
   455 
   455 
   456 fun prove_strong_ind (pred_name, avoids) ctxt = 
   456 fun prove_strong_ind (pred_name, avoids) ctxt = 
   457   Proof.theorem NONE (K I) [] ctxt
   457   Proof.theorem NONE (K I) [] ctxt
   458 
   458 
   459 local structure P = OuterParse and K = OuterKeyword in
   459 local structure P = Parse and K = Keyword in
   460 
   460 
   461 val _ =
   461 val _ =
   462   OuterSyntax.local_theory_to_proof "nominal_inductive"
   462   Outer_Syntax.local_theory_to_proof "nominal_inductive"
   463     "proves strong induction theorem for inductive predicate involving nominal datatypes" K.thy_goal
   463     "proves strong induction theorem for inductive predicate involving nominal datatypes" K.thy_goal
   464       (P.xname -- (Scan.optional (P.$$$ "avoids" |-- P.enum1 "|" (P.name --
   464       (P.xname -- (Scan.optional (P.$$$ "avoids" |-- P.enum1 "|" (P.name --
   465         (P.$$$ ":" |-- P.and_list1 P.term))) []) >>  prove_strong_ind)
   465         (P.$$$ ":" |-- P.and_list1 P.term))) []) >>  prove_strong_ind)
   466 
   466 
   467 end;
   467 end;
   472 nominal_inductive typing
   472 nominal_inductive typing
   473 *)
   473 *)
   474 
   474 
   475 (* Substitution *)
   475 (* Substitution *)
   476 
   476 
       
   477 primrec match_Var_raw where
       
   478   "match_Var_raw (Var_raw x) = Some x"
       
   479 | "match_Var_raw (App_raw x y) = None"
       
   480 | "match_Var_raw (Lam_raw n t) = None"
       
   481 
       
   482 quotient_definition
       
   483   "match_Var :: lam \<Rightarrow> name option"
       
   484 is match_Var_raw
       
   485 
       
   486 lemma [quot_respect]: "(alpha_lam_raw ===> op =) match_Var_raw match_Var_raw"
       
   487   apply rule
       
   488   apply (induct_tac a b rule: alpha_lam_raw.induct)
       
   489   apply simp_all
       
   490   done
       
   491 
       
   492 lemmas match_Var_simps = match_Var_raw.simps[quot_lifted]
       
   493 
       
   494 primrec match_App_raw where
       
   495   "match_App_raw (Var_raw x) = None"
       
   496 | "match_App_raw (App_raw x y) = Some (x, y)"
       
   497 | "match_App_raw (Lam_raw n t) = None"
       
   498 
       
   499 quotient_definition
       
   500   "match_App :: lam \<Rightarrow> (lam \<times> lam) option"
       
   501 is match_App_raw
       
   502 
       
   503 lemma [quot_respect]:
       
   504   "(alpha_lam_raw ===> option_rel (prod_rel alpha_lam_raw alpha_lam_raw)) match_App_raw match_App_raw"
       
   505   apply (intro fun_relI)
       
   506   apply (induct_tac a b rule: alpha_lam_raw.induct)
       
   507   apply simp_all
       
   508   done
       
   509 
       
   510 lemmas match_App_simps = match_App_raw.simps[quot_lifted]
       
   511 
   477 definition new where
   512 definition new where
   478   "new s = (THE x. \<forall>a \<in> s. atom x \<noteq> a)"
   513   "new (s :: 'a :: fs) = (THE x. \<forall>a \<in> supp s. atom x \<noteq> a)"
   479 
   514 
   480 lemma size_no_change: "size (p \<bullet> (t :: lam_raw)) = size t"
   515 definition
   481   by (induct t) simp_all
   516   "match_Lam (S :: 'a :: fs) t = (if (\<exists>n s. (t = Lam n s)) then
   482 
   517     (let z = new (S, t) in Some (z, THE s. t = Lam z s)) else None)"
   483 function
   518 
   484   subst_raw :: "lam_raw \<Rightarrow> name \<Rightarrow> lam_raw \<Rightarrow> lam_raw"
   519 lemma lam_half_inj: "(Lam z s = Lam z sa) = (s = sa)"
   485 where
   520   apply auto
   486   "subst_raw (Var_raw x) y s = (if x=y then s else (Var_raw x))"
   521   apply (simp only: lam.eq_iff alphas)
   487 | "subst_raw (App_raw l r) y s = App_raw (subst_raw l y s) (subst_raw r y s)"
   522   apply clarify
   488 | "subst_raw (Lam_raw x t) y s =
   523   apply (simp add: eqvts)
   489       Lam_raw (new ({atom y} \<union> fv_lam_raw s \<union> fv_lam_raw t - {atom x}))
   524   sorry
   490        (subst_raw ((x \<leftrightarrow> (new ({atom y} \<union> fv_lam_raw s \<union> fv_lam_raw t - {atom x}))) \<bullet> t) y s)"
   525 
   491 by (pat_completeness, auto)
   526 lemma match_Lam_simps:
   492 termination
   527   "match_Lam S (Var n) = None"
   493   apply (relation "measure (\<lambda>(t, y, s). (size t))")
   528   "match_Lam S (App l r) = None"
   494   apply (auto simp add: size_no_change)
   529   "z = new (S, (Lam z s)) \<Longrightarrow> match_Lam S (Lam z s) = Some (z, s)"
       
   530   apply (simp_all add: match_Lam_def)
       
   531   apply (simp add: lam_half_inj)
       
   532   apply auto
   495   done
   533   done
   496 
   534 
   497 lemma fv_subst[simp]: "fv_lam_raw (subst_raw t y s) =
   535 (*
   498   (if (atom y \<in> fv_lam_raw t) then fv_lam_raw s \<union> (fv_lam_raw t - {atom y}) else fv_lam_raw t)"
   536 lemma match_Lam_simps2:
   499   apply (induct t arbitrary: s)
   537   "atom n \<sharp> ((S :: 'a :: fs), Lam n s) \<Longrightarrow> match_Lam S (Lam n s) = Some (n, s)"
   500   apply (auto simp add: supp_at_base)[1]
   538   apply (rule_tac t="Lam n s"
   501   apply (auto simp add: supp_at_base)[1]
   539               and s="Lam (new (S, (Lam n s))) ((n \<leftrightarrow> (new (S, (Lam n s)))) \<bullet> s)" in subst)
   502   apply (simp only: fv_lam_raw.simps)
   540   defer
       
   541   apply (subst match_Lam_simps(3))
       
   542   defer
   503   apply simp
   543   apply simp
   504   apply (rule conjI)
   544 *)
       
   545 
       
   546 (*primrec match_Lam_raw where
       
   547   "match_Lam_raw (S :: atom set) (Var_raw x) = None"
       
   548 | "match_Lam_raw S (App_raw x y) = None"
       
   549 | "match_Lam_raw S (Lam_raw n t) = (let z = new (S \<union> (fv_lam_raw t - {atom n})) in Some (z, (n \<leftrightarrow> z) \<bullet> t))"
       
   550 
       
   551 quotient_definition
       
   552   "match_Lam :: (atom set) \<Rightarrow> lam \<Rightarrow> (name \<times> lam) option"
       
   553 is match_Lam_raw
       
   554 
       
   555 lemma swap_fresh:
       
   556   assumes a: "fv_lam_raw t \<sharp>* p"
       
   557   shows "alpha_lam_raw (p \<bullet> t) t"
       
   558   using a apply (induct t)
       
   559   apply (simp add: supp_at_base fresh_star_def)
       
   560   apply (rule alpha_lam_raw.intros)
       
   561   apply (metis Rep_name_inverse atom_eqvt atom_name_def fresh_perm)
       
   562   apply (simp)
       
   563   apply (simp only: fresh_star_union)
   505   apply clarify
   564   apply clarify
   506   sorry
   565   apply (rule alpha_lam_raw.intros)
   507 
       
   508 thm supp_at_base
       
   509 lemma new_eqvt[eqvt]: "p \<bullet> (new s) = new (p \<bullet> s)"
       
   510   sorry
       
   511 
       
   512 lemma subst_var_raw_eqvt[eqvt]: "p \<bullet> (subst_raw t y s) = subst_raw (p \<bullet> t) (p \<bullet> y) (p \<bullet> s)"
       
   513   apply (induct t arbitrary: p y s)
       
   514   apply simp_all
       
   515   apply(perm_simp)
       
   516   apply simp
   566   apply simp
   517   sorry
   567   apply simp
   518 
       
   519 lemma subst_id: "alpha_lam_raw (subst_raw x d (Var_raw d)) x"
       
   520   apply (induct x arbitrary: d)
       
   521   apply (simp_all add: alpha_lam_raw.intros)
       
   522   apply (rule alpha_lam_raw.intros)
       
   523   apply (rule_tac x="(name \<leftrightarrow> new (insert (atom d) (supp d)))" in exI)
       
   524   apply (simp add: alphas)
       
   525   oops
       
   526 
       
   527 quotient_definition
       
   528   subst ("_ [ _ ::= _ ]" [100,100,100] 100)
       
   529 where
       
   530   "subst :: lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" is "subst_raw"
       
   531 
       
   532 lemmas fv_rsp = quot_respect(10)[simplified]
       
   533 
       
   534 lemma subst_rsp_pre1:
       
   535   assumes a: "alpha_lam_raw a b"
       
   536   shows "alpha_lam_raw (subst_raw a y c) (subst_raw b y c)"
       
   537   using a
       
   538   apply (induct a b arbitrary: c y rule: alpha_lam_raw.induct)
       
   539   apply (simp add: equivp_reflp[OF lam_equivp])
       
   540   apply (simp add: alpha_lam_raw.intros)
       
   541   apply (simp only: alphas)
       
   542   apply clarify
       
   543   apply (simp only: subst_raw.simps)
       
   544   apply (rule alpha_lam_raw.intros)
       
   545   apply (simp only: alphas)
       
   546   sorry
       
   547 
       
   548 lemma subst_rsp_pre2:
       
   549   assumes a: "alpha_lam_raw a b"
       
   550   shows "alpha_lam_raw (subst_raw c y a) (subst_raw c y b)"
       
   551   using a
       
   552   apply (induct c arbitrary: a b y)
       
   553   apply (simp add: equivp_reflp[OF lam_equivp])
       
   554   apply (simp add: alpha_lam_raw.intros)
       
   555   apply simp
   568   apply simp
   556   apply (rule alpha_lam_raw.intros)
   569   apply (rule alpha_lam_raw.intros)
   557   sorry
   570   sorry
   558 
   571 
   559 lemma [quot_respect]:
   572 lemma [quot_respect]:
   560   "(alpha_lam_raw ===> op = ===> alpha_lam_raw ===> alpha_lam_raw) subst_raw subst_raw"
   573   "(op = ===> alpha_lam_raw ===> option_rel (prod_rel op = alpha_lam_raw)) match_Lam_raw match_Lam_raw"
   561   proof (intro fun_relI, simp)
   574   proof (intro fun_relI, clarify)
   562     fix a b c d :: lam_raw
   575     fix S t s
   563     fix y :: name
   576     assume a: "alpha_lam_raw t s"
   564     assume a: "alpha_lam_raw a b"
   577     show "option_rel (prod_rel op = alpha_lam_raw) (match_Lam_raw S t) (match_Lam_raw S s)"
   565     assume b: "alpha_lam_raw c d"
   578       using a proof (induct t s rule: alpha_lam_raw.induct)
   566     have c: "alpha_lam_raw (subst_raw a y c) (subst_raw b y c)" using subst_rsp_pre1 a by simp
   579       case goal1 show ?case by simp
   567     then have d: "alpha_lam_raw (subst_raw b y c) (subst_raw b y d)" using subst_rsp_pre2 b by simp
   580     next
   568     show "alpha_lam_raw (subst_raw a y c) (subst_raw b y d)"
   581       case goal2 show ?case by simp
   569       using c d equivp_transp[OF lam_equivp] by blast
   582     next
       
   583       case (goal3 x t y s)
       
   584       then obtain p where "({atom x}, t) \<approx>gen (\<lambda>x1 x2. alpha_lam_raw x1 x2 \<and>
       
   585                               option_rel (prod_rel op = alpha_lam_raw) (match_Lam_raw S x1)
       
   586                                (match_Lam_raw S x2)) fv_lam_raw p ({atom y}, s)" ..
       
   587       then have
       
   588         c: "fv_lam_raw t - {atom x} = fv_lam_raw s - {atom y}" and
       
   589         d: "(fv_lam_raw t - {atom x}) \<sharp>* p" and
       
   590         e: "alpha_lam_raw (p \<bullet> t) s" and
       
   591         f: "option_rel (prod_rel op = alpha_lam_raw) (match_Lam_raw S (p \<bullet> t)) (match_Lam_raw S s)" and
       
   592         g: "p \<bullet> {atom x} = {atom y}" unfolding alphas(1) by - (elim conjE, assumption)+
       
   593       let ?z = "new (S \<union> (fv_lam_raw t - {atom x}))"
       
   594       have h: "?z = new (S \<union> (fv_lam_raw s - {atom y}))" using c by simp
       
   595       show ?case
       
   596         unfolding match_Lam_raw.simps Let_def option_rel.simps prod_rel.simps split_conv
       
   597       proof
       
   598         show "?z = new (S \<union> (fv_lam_raw s - {atom y}))" by (fact h)
       
   599       next
       
   600         have "atom y \<sharp> p" sorry
       
   601         have "fv_lam_raw t \<sharp>* ((x \<leftrightarrow> y) \<bullet> p)" sorry
       
   602         then have "alpha_lam_raw (((x \<leftrightarrow> y) \<bullet> p) \<bullet> t) t" using swap_fresh by auto
       
   603         then have "alpha_lam_raw (p \<bullet> t) ((x \<leftrightarrow> y) \<bullet> t)" sorry
       
   604         have "alpha_lam_raw t ((x \<leftrightarrow> y) \<bullet> s)" sorry
       
   605         then have "alpha_lam_raw ((x \<leftrightarrow> ?z) \<bullet> t) ((y \<leftrightarrow> ?z) \<bullet> s)" using eqvts(15) sorry
       
   606         then show "alpha_lam_raw ((x \<leftrightarrow> new (S \<union> (fv_lam_raw t - {atom x}))) \<bullet> t)
       
   607                   ((y \<leftrightarrow> new (S \<union> (fv_lam_raw s - {atom y}))) \<bullet> s)" unfolding h .
       
   608       qed
       
   609     qed
   570   qed
   610   qed
   571 
   611 
   572 lemma simp3:
   612 lemmas match_Lam_simps = match_Lam_raw.simps[quot_lifted]
   573   "x \<noteq> y \<Longrightarrow> atom x \<notin> fv_lam_raw s \<Longrightarrow> alpha_lam_raw (subst_raw (Lam_raw x t) y s) (Lam_raw x (subst_raw t y s))"
   613 *)
   574   apply simp
   614 
   575   apply (rule alpha_lam_raw.intros)
   615 lemma app_some: "match_App x = Some (a, b) \<Longrightarrow> x = App a b"
   576   apply (rule_tac x ="(x \<leftrightarrow> (new (insert (atom y) (fv_lam_raw s \<union> fv_lam_raw t) -
   616 by (induct x rule: lam.induct) (simp_all add: match_App_simps)
   577                     {atom x})))" in exI)
   617 
   578   apply (simp only: alphas)
   618 lemma lam_some: "match_Lam S x = Some (z, s) \<Longrightarrow> x = Lam z s \<and> atom z \<sharp> S"
   579   apply simp
   619   apply (induct x rule: lam.induct)
       
   620   apply (simp_all add: match_Lam_simps)
       
   621   apply (thin_tac "match_Lam S lam = Some (z, s) \<Longrightarrow> lam = Lam z s \<and> atom z \<sharp> S")
       
   622   apply (simp add: match_Lam_def)
       
   623   apply (subgoal_tac "\<exists>n s. Lam name lam = Lam n s")
       
   624   prefer 2
       
   625   apply auto[1]
       
   626   apply (simp add: Let_def)
       
   627   apply (thin_tac "\<exists>n s. Lam name lam = Lam n s")
       
   628   apply clarify
       
   629   apply (rule conjI)
       
   630   apply (rule_tac t="THE s. Lam name lam = Lam (new (S, Lam name lam)) s" and
       
   631                   s="(name \<leftrightarrow> (new (S, Lam name lam))) \<bullet> lam" in subst)
       
   632   defer
       
   633   apply (simp add: lam.eq_iff)
       
   634   apply (rule_tac x="(name \<leftrightarrow> (new (S, Lam name lam)))" in exI)
       
   635   apply (simp add: alphas)
       
   636   apply (simp add: eqvts)
       
   637   apply (rule conjI)
   580   sorry
   638   sorry
   581 
   639 
   582 lemmas subst_simps = subst_raw.simps(1-2)[quot_lifted,no_vars]
   640 function subst where
   583   simp3[quot_lifted,simplified lam.supp,simplified fresh_def[symmetric], no_vars]
   641 "subst v s t = (
       
   642   case match_Var t of Some n \<Rightarrow> if n = v then s else Var n | None \<Rightarrow>
       
   643   case match_App t of Some (l, r) \<Rightarrow> App (subst v s l) (subst v s r) | None \<Rightarrow>
       
   644   case match_Lam (v,s) t of Some (n, t) \<Rightarrow> Lam n (subst v s t) | None \<Rightarrow> undefined)"
       
   645 by pat_completeness auto
       
   646 
       
   647 termination apply (relation "measure (\<lambda>(_, _, t). size t)")
       
   648   apply auto[1]
       
   649   apply (case_tac a) apply simp
       
   650   apply (frule lam_some) apply simp
       
   651   apply (case_tac a) apply simp
       
   652   apply (frule app_some) apply simp
       
   653   apply (case_tac a) apply simp
       
   654   apply (frule app_some) apply simp
       
   655 done
       
   656 
       
   657 lemmas lam_exhaust = lam_raw.exhaust[quot_lifted]
       
   658 
       
   659 lemma subst_eqvt:
       
   660   "p \<bullet> (subst v s t) = subst (p \<bullet> v) (p \<bullet> s) (p \<bullet> t)"
       
   661   proof (induct v s t rule: subst.induct)
       
   662     case (1 v s t)
       
   663     show ?case proof (cases t rule: lam_exhaust)
       
   664       fix n
       
   665       assume "t = Var n"
       
   666       then show ?thesis by (simp add: match_Var_simps)
       
   667     next
       
   668       fix l r
       
   669       assume "t = App l r"
       
   670       then show ?thesis
       
   671         apply (simp only:)
       
   672         apply (subst subst.simps)
       
   673         apply (subst match_Var_simps)
       
   674         apply (simp only: option.cases)
       
   675         apply (subst match_App_simps)
       
   676         apply (simp only: option.cases)
       
   677         apply (simp only: prod.cases)
       
   678         apply (simp only: lam.perm)
       
   679         apply (subst (3) subst.simps)
       
   680         apply (subst match_Var_simps)
       
   681         apply (simp only: option.cases)
       
   682         apply (subst match_App_simps)
       
   683         apply (simp only: option.cases)
       
   684         apply (simp only: prod.cases)
       
   685         apply (subst 1(2)[of "(l, r)" "l" "r"])
       
   686         apply (simp add: match_Var_simps)
       
   687         apply (simp add: match_App_simps)
       
   688         apply (rule refl)
       
   689         apply (subst 1(3)[of "(l, r)" "l" "r"])
       
   690         apply (simp add: match_Var_simps)
       
   691         apply (simp add: match_App_simps)
       
   692         apply (rule refl)
       
   693         apply (rule refl)
       
   694         done
       
   695     next
       
   696       fix n t'
       
   697       assume "t = Lam n t'"
       
   698       then show ?thesis
       
   699         apply (simp only: )
       
   700         apply (simp only: lam.perm)
       
   701         apply (subst subst.simps)
       
   702         apply (subst match_Var_simps)
       
   703         apply (simp only: option.cases)
       
   704         apply (subst match_App_simps)
       
   705         apply (simp only: option.cases)
       
   706         apply (rule_tac t="Lam n t'" and s="Lam (new ((v, s), Lam n t')) ((n \<leftrightarrow> new ((v, s), Lam n t')) \<bullet> t')" in subst)
       
   707         defer
       
   708         apply (subst match_Lam_simps)
       
   709         defer
       
   710         apply (simp only: option.cases)
       
   711         apply (simp only: prod.cases)
       
   712         apply (subst (2) subst.simps)
       
   713         apply (subst match_Var_simps)
       
   714         apply (simp only: option.cases)
       
   715         apply (subst match_App_simps)
       
   716         apply (simp only: option.cases)
       
   717         apply (rule_tac t="Lam (p \<bullet> n) (p \<bullet> t')" and s="Lam (new ((p \<bullet> v, p \<bullet> s), Lam (p \<bullet> n) (p \<bullet> t'))) (((p \<bullet> n) \<leftrightarrow> new ((p \<bullet> v, p \<bullet> s), Lam (p \<bullet> n) (p \<bullet> t'))) \<bullet> t')" in subst)
       
   718         defer
       
   719         apply (subst match_Lam_simps)
       
   720         defer
       
   721         apply (simp only: option.cases)
       
   722         apply (simp only: prod.cases)
       
   723         apply (simp only: lam.perm)
       
   724         thm 1(1)
       
   725         sorry
       
   726     qed
       
   727   qed
       
   728 
       
   729 lemma subst_proper_eqs:
       
   730   "subst y s (Var x) = (if x = y then s else (Var x))"
       
   731   "subst y s (App l r) = App (subst y s l) (subst y s r)"
       
   732   "atom x \<sharp> (t, s) \<Longrightarrow> subst y s (Lam x t) = Lam x (subst y s t)"
       
   733   apply (subst subst.simps)
       
   734   apply (simp only: match_Var_simps)
       
   735   apply (simp only: option.simps)
       
   736   apply (subst subst.simps)
       
   737   apply (simp only: match_App_simps)
       
   738   apply (simp only: option.simps)
       
   739   apply (simp only: prod.simps)
       
   740   apply (simp only: match_Var_simps)
       
   741   apply (simp only: option.simps)
       
   742   apply (subst subst.simps)
       
   743   apply (simp only: match_Var_simps)
       
   744   apply (simp only: option.simps)
       
   745   apply (simp only: match_App_simps)
       
   746   apply (simp only: option.simps)
       
   747   apply (rule_tac t="Lam x t" and s="Lam (new ((y, s), Lam x t)) ((x \<leftrightarrow> new ((y, s), Lam x t)) \<bullet> t)" in subst)
       
   748   defer
       
   749   apply (subst match_Lam_simps)
       
   750   defer
       
   751   apply (simp only: option.simps)
       
   752   apply (simp only: prod.simps)
       
   753   sorry
   584 
   754 
   585 end
   755 end
   586 
   756 
   587 
   757 
   588 
   758