Quot/Nominal/Terms2.thy
changeset 1184 85501074fd4f
parent 1183 cb3da5b540f2
child 1185 7566b899ca6a
equal deleted inserted replaced
1183:cb3da5b540f2 1184:85501074fd4f
     1 theory Terms
       
     2 imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv"
       
     3 begin
       
     4 
       
     5 atom_decl name
       
     6 
       
     7 text {* primrec seems to be genarally faster than fun *}
       
     8 
       
     9 section {*** lets with binding patterns ***}
       
    10 
       
    11 datatype rtrm1 =
       
    12   rVr1 "name"
       
    13 | rAp1 "rtrm1" "rtrm1"
       
    14 | rLm1 "name" "rtrm1"        --"name is bound in trm1"
       
    15 | rLt1 "bp" "rtrm1" "rtrm1"   --"all variables in bp are bound in the 2nd trm1"
       
    16 and bp =
       
    17   BUnit
       
    18 | BVr "name"
       
    19 | BPr "bp" "bp"
       
    20 
       
    21 (* to be given by the user *)
       
    22 
       
    23 primrec 
       
    24   bv1
       
    25 where
       
    26   "bv1 (BUnit) = {}"
       
    27 | "bv1 (BVr x) = {atom x}"
       
    28 | "bv1 (BPr bp1 bp2) = (bv1 bp1) \<union> (bv1 bp2)"
       
    29 
       
    30 local_setup {* define_raw_fv "Terms.rtrm1"
       
    31   [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term bv1}, 0)], [], [(SOME @{term bv1}, 0)]]],
       
    32    [[], [[]], [[], []]]] *}
       
    33 print_theorems
       
    34 
       
    35 setup {* snd o define_raw_perms ["rtrm1", "bp"] ["Terms.rtrm1", "Terms.bp"] *}
       
    36 
       
    37 inductive
       
    38   alpha1 :: "rtrm1 \<Rightarrow> rtrm1 \<Rightarrow> bool" ("_ \<approx>1 _" [100, 100] 100)
       
    39 where
       
    40   a1: "a = b \<Longrightarrow> (rVr1 a) \<approx>1 (rVr1 b)"
       
    41 | a2: "\<lbrakk>t1 \<approx>1 t2; s1 \<approx>1 s2\<rbrakk> \<Longrightarrow> rAp1 t1 s1 \<approx>1 rAp1 t2 s2"
       
    42 | a3: "(\<exists>pi. (({atom aa}, t) \<approx>gen alpha1 fv_rtrm1 pi ({atom ab}, s))) \<Longrightarrow> rLm1 aa t \<approx>1 rLm1 ab s"
       
    43 | a4: "t1 \<approx>1 t2 \<Longrightarrow> (\<exists>pi. (((bv1 b1), s1) \<approx>gen alpha1 fv_rtrm1 pi ((bv1 b2), s2))) \<Longrightarrow> rLt1 b1 t1 s1 \<approx>1 rLt1 b2 t2 s2"
       
    44 
       
    45 lemma alpha1_inj:
       
    46 "(rVr1 a \<approx>1 rVr1 b) = (a = b)"
       
    47 "(rAp1 t1 s1 \<approx>1 rAp1 t2 s2) = (t1 \<approx>1 t2 \<and> s1 \<approx>1 s2)"
       
    48 "(rLm1 aa t \<approx>1 rLm1 ab s) = (\<exists>pi. (({atom aa}, t) \<approx>gen alpha1 fv_rtrm1 pi ({atom ab}, s)))"
       
    49 "(rLt1 b1 t1 s1 \<approx>1 rLt1 b2 t2 s2) = (t1 \<approx>1 t2 \<and> (\<exists>pi. (((bv1 b1), s1) \<approx>gen alpha1 fv_rtrm1 pi ((bv1 b2), s2))))"
       
    50 apply -
       
    51 apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros)
       
    52 apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros)
       
    53 apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros)
       
    54 apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros)
       
    55 done
       
    56 
       
    57 (* Shouyld we derive it? But bv is given by the user? *)
       
    58 lemma bv1_eqvt[eqvt]:
       
    59   shows "(pi \<bullet> bv1 x) = bv1 (pi \<bullet> x)"
       
    60   apply (induct x)
       
    61 apply (simp_all add: empty_eqvt insert_eqvt atom_eqvt eqvts)
       
    62 done
       
    63 
       
    64 lemma fv_rtrm1_eqvt[eqvt]:
       
    65     "(pi\<bullet>fv_rtrm1 t) = fv_rtrm1 (pi\<bullet>t)"
       
    66     "(pi\<bullet>fv_bp b) = fv_bp (pi\<bullet>b)"
       
    67   apply (induct t and b)
       
    68   apply (simp_all add: insert_eqvt atom_eqvt empty_eqvt union_eqvt Diff_eqvt bv1_eqvt)
       
    69   done
       
    70 
       
    71 
       
    72 lemma alpha1_eqvt:
       
    73   shows "t \<approx>1 s \<Longrightarrow> (pi \<bullet> t) \<approx>1 (pi \<bullet> s)"
       
    74   apply (induct t s rule: alpha1.inducts)
       
    75   apply (simp_all add:eqvts alpha1_inj)
       
    76   apply (erule exE)
       
    77   apply (rule_tac x="pi \<bullet> pia" in exI)
       
    78   apply (simp add: alpha_gen)
       
    79   apply(erule conjE)+
       
    80   apply(rule conjI)
       
    81   apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1])
       
    82   apply(simp add: atom_eqvt Diff_eqvt insert_eqvt empty_eqvt fv_rtrm1_eqvt)
       
    83   apply(rule conjI)
       
    84   apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
       
    85   apply(simp add: atom_eqvt Diff_eqvt fv_rtrm1_eqvt insert_eqvt empty_eqvt)
       
    86   apply(simp add: permute_eqvt[symmetric])
       
    87   apply (erule exE)
       
    88   apply (rule_tac x="pi \<bullet> pia" in exI)
       
    89   apply (simp add: alpha_gen)
       
    90   apply(erule conjE)+
       
    91   apply(rule conjI)
       
    92   apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1])
       
    93   apply(simp add: fv_rtrm1_eqvt Diff_eqvt bv1_eqvt)
       
    94   apply(rule conjI)
       
    95   apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
       
    96   apply(simp add: atom_eqvt fv_rtrm1_eqvt Diff_eqvt bv1_eqvt)
       
    97   apply(simp add: permute_eqvt[symmetric])
       
    98   done
       
    99 
       
   100 lemma alpha1_equivp: "equivp alpha1" 
       
   101   sorry
       
   102 
       
   103 quotient_type trm1 = rtrm1 / alpha1
       
   104   by (rule alpha1_equivp)
       
   105 
       
   106 quotient_definition
       
   107   "Vr1 :: name \<Rightarrow> trm1"
       
   108 is
       
   109   "rVr1"
       
   110 
       
   111 quotient_definition
       
   112   "Ap1 :: trm1 \<Rightarrow> trm1 \<Rightarrow> trm1"
       
   113 is
       
   114   "rAp1"
       
   115 
       
   116 quotient_definition
       
   117   "Lm1 :: name \<Rightarrow> trm1 \<Rightarrow> trm1"
       
   118 is
       
   119   "rLm1"
       
   120 
       
   121 quotient_definition
       
   122   "Lt1 :: bp \<Rightarrow> trm1 \<Rightarrow> trm1 \<Rightarrow> trm1"
       
   123 is
       
   124   "rLt1"
       
   125 
       
   126 quotient_definition
       
   127   "fv_trm1 :: trm1 \<Rightarrow> atom set"
       
   128 is
       
   129   "fv_rtrm1"
       
   130 
       
   131 lemma alpha_rfv1:
       
   132   shows "t \<approx>1 s \<Longrightarrow> fv_rtrm1 t = fv_rtrm1 s"
       
   133   apply(induct rule: alpha1.induct)
       
   134   apply(simp_all add: alpha_gen.simps)
       
   135   sorry
       
   136 
       
   137 lemma [quot_respect]:
       
   138  "(op = ===> alpha1) rVr1 rVr1"
       
   139  "(alpha1 ===> alpha1 ===> alpha1) rAp1 rAp1"
       
   140  "(op = ===> alpha1 ===> alpha1) rLm1 rLm1"
       
   141  "(op = ===> alpha1 ===> alpha1 ===> alpha1) rLt1 rLt1"
       
   142 apply (auto simp add: alpha1_inj)
       
   143 apply (rule_tac x="0" in exI)
       
   144 apply (simp add: fresh_star_def fresh_zero_perm alpha_rfv1 alpha_gen)
       
   145 apply (rule_tac x="0" in exI)
       
   146 apply (simp add: alpha_gen fresh_star_def fresh_zero_perm alpha_rfv1)
       
   147 done
       
   148 
       
   149 lemma [quot_respect]:
       
   150   "(op = ===> alpha1 ===> alpha1) permute permute"
       
   151   by (simp add: alpha1_eqvt)
       
   152 
       
   153 lemma [quot_respect]:
       
   154   "(alpha1 ===> op =) fv_rtrm1 fv_rtrm1"
       
   155   by (simp add: alpha_rfv1)
       
   156 
       
   157 lemmas trm1_bp_induct = rtrm1_bp.induct[quot_lifted]
       
   158 lemmas trm1_bp_inducts = rtrm1_bp.inducts[quot_lifted]
       
   159 
       
   160 instantiation trm1 and bp :: pt
       
   161 begin
       
   162 
       
   163 quotient_definition
       
   164   "permute_trm1 :: perm \<Rightarrow> trm1 \<Rightarrow> trm1"
       
   165 is
       
   166   "permute :: perm \<Rightarrow> rtrm1 \<Rightarrow> rtrm1"
       
   167 
       
   168 lemmas permute_trm1[simp] = permute_rtrm1_permute_bp.simps[quot_lifted]
       
   169 
       
   170 instance
       
   171 apply default
       
   172 apply(induct_tac [!] x rule: trm1_bp_inducts(1))
       
   173 apply(simp_all)
       
   174 done
       
   175 
       
   176 end
       
   177 
       
   178 lemmas fv_trm1 = fv_rtrm1_fv_bp.simps[quot_lifted]
       
   179 
       
   180 lemmas fv_trm1_eqvt = fv_rtrm1_eqvt[quot_lifted]
       
   181 
       
   182 lemmas alpha1_INJ = alpha1_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]
       
   183 
       
   184 lemma lm1_supp_pre:
       
   185   shows "(supp (atom x, t)) supports (Lm1 x t) "
       
   186 apply(simp add: supports_def)
       
   187 apply(fold fresh_def)
       
   188 apply(simp add: fresh_Pair swap_fresh_fresh)
       
   189 apply(clarify)
       
   190 apply(subst swap_at_base_simps(3))
       
   191 apply(simp_all add: fresh_atom)
       
   192 done
       
   193 
       
   194 lemma lt1_supp_pre:
       
   195   shows "(supp (x, t, s)) supports (Lt1 t x s) "
       
   196 apply(simp add: supports_def)
       
   197 apply(fold fresh_def)
       
   198 apply(simp add: fresh_Pair swap_fresh_fresh)
       
   199 done
       
   200 
       
   201 lemma bp_supp: "finite (supp (bp :: bp))"
       
   202   apply (induct bp)
       
   203   apply(simp_all add: supp_def)
       
   204   apply (fold supp_def)
       
   205   apply (simp add: supp_at_base)
       
   206   apply(simp add: Collect_imp_eq)
       
   207   apply(simp add: Collect_neg_eq[symmetric])
       
   208   apply (fold supp_def)
       
   209   apply (simp)
       
   210   done
       
   211 
       
   212 instance trm1 :: fs
       
   213 apply default
       
   214 apply(induct_tac x rule: trm1_bp_inducts(1))
       
   215 apply(simp_all)
       
   216 apply(simp add: supp_def alpha1_INJ eqvts)
       
   217 apply(simp add: supp_def[symmetric] supp_at_base)
       
   218 apply(simp only: supp_def alpha1_INJ eqvts permute_trm1)
       
   219 apply(simp add: Collect_imp_eq Collect_neg_eq)
       
   220 apply(rule supports_finite)
       
   221 apply(rule lm1_supp_pre)
       
   222 apply(simp add: supp_Pair supp_atom)
       
   223 apply(rule supports_finite)
       
   224 apply(rule lt1_supp_pre)
       
   225 apply(simp add: supp_Pair supp_atom bp_supp)
       
   226 done
       
   227 
       
   228 lemma fv_eq_bv: "fv_bp bp = bv1 bp"
       
   229 apply(induct bp rule: trm1_bp_inducts(2))
       
   230 apply(simp_all)
       
   231 done
       
   232 
       
   233 lemma supp_fv:
       
   234   shows "supp t = fv_trm1 t"
       
   235 apply(induct t rule: trm1_bp_inducts(1))
       
   236 apply(simp_all)
       
   237 apply(simp add: supp_def permute_trm1 alpha1_INJ fv_trm1)
       
   238 apply(simp only: supp_at_base[simplified supp_def])
       
   239 apply(simp add: supp_def permute_trm1 alpha1_INJ fv_trm1)
       
   240 apply(simp add: Collect_imp_eq Collect_neg_eq)
       
   241 apply(subgoal_tac "supp (Lm1 name rtrm1) = supp (Abs {atom name} rtrm1)")
       
   242 apply(simp add: supp_Abs fv_trm1)
       
   243 apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt)
       
   244 apply(simp add: alpha1_INJ)
       
   245 apply(simp add: Abs_eq_iff)
       
   246 apply(simp add: alpha_gen.simps)
       
   247 apply(simp add: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric])
       
   248 apply(subgoal_tac "supp (Lt1 bp rtrm11 rtrm12) = supp(rtrm11) \<union> supp (Abs (bv1 bp) rtrm12)")
       
   249 apply(simp add: supp_Abs fv_trm1 fv_eq_bv)
       
   250 apply(simp (no_asm) add: supp_def)
       
   251 apply(simp add: alpha1_INJ)
       
   252 apply(simp add: Abs_eq_iff)
       
   253 apply(simp add: alpha_gen)
       
   254 apply(simp add: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric] bv1_eqvt)
       
   255 apply(simp add: Collect_imp_eq Collect_neg_eq)
       
   256 done
       
   257 
       
   258 lemma trm1_supp:
       
   259   "supp (Vr1 x) = {atom x}"
       
   260   "supp (Ap1 t1 t2) = supp t1 \<union> supp t2"
       
   261   "supp (Lm1 x t) = (supp t) - {atom x}"
       
   262   "supp (Lt1 b t s) = supp t \<union> (supp s - bv1 b)"
       
   263 by (simp_all add: supp_fv fv_trm1 fv_eq_bv)
       
   264 
       
   265 lemma trm1_induct_strong:
       
   266   assumes "\<And>name b. P b (Vr1 name)"
       
   267   and     "\<And>rtrm11 rtrm12 b. \<lbrakk>\<And>c. P c rtrm11; \<And>c. P c rtrm12\<rbrakk> \<Longrightarrow> P b (Ap1 rtrm11 rtrm12)"
       
   268   and     "\<And>name rtrm1 b. \<lbrakk>\<And>c. P c rtrm1; (atom name) \<sharp> b\<rbrakk> \<Longrightarrow> P b (Lm1 name rtrm1)"
       
   269   and     "\<And>bp rtrm11 rtrm12 b. \<lbrakk>\<And>c. P c rtrm11; \<And>c. P c rtrm12; bv1 bp \<sharp>* b\<rbrakk> \<Longrightarrow> P b (Lt1 bp rtrm11 rtrm12)"
       
   270   shows   "P a rtrma"
       
   271 sorry
       
   272 
       
   273 section {*** lets with single assignments ***}
       
   274 
       
   275 datatype rtrm2 =
       
   276   rVr2 "name"
       
   277 | rAp2 "rtrm2" "rtrm2"
       
   278 | rLm2 "name" "rtrm2" --"bind (name) in (rtrm2)"
       
   279 | rLt2 "rassign" "rtrm2" --"bind (bv2 rassign) in (rtrm2)"
       
   280 and rassign =
       
   281   rAs "name" "rtrm2"
       
   282 
       
   283 (* to be given by the user *)
       
   284 primrec 
       
   285   rbv2
       
   286 where
       
   287   "rbv2 (rAs x t) = {atom x}"
       
   288 
       
   289 local_setup {* define_raw_fv "Terms.rtrm2"
       
   290   [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term rbv2}, 0)], [(SOME @{term rbv2}, 0)]]],
       
   291    [[[], []]]] *}
       
   292 print_theorems
       
   293 
       
   294 setup {* snd o define_raw_perms ["rtrm2", "rassign"] ["Terms.rtrm2", "Terms.rassign"] *}
       
   295 
       
   296 inductive
       
   297   alpha2 :: "rtrm2 \<Rightarrow> rtrm2 \<Rightarrow> bool" ("_ \<approx>2 _" [100, 100] 100)
       
   298 and
       
   299   alpha2a :: "rassign \<Rightarrow> rassign \<Rightarrow> bool" ("_ \<approx>2a _" [100, 100] 100)
       
   300 where
       
   301   a1: "a = b \<Longrightarrow> (rVr2 a) \<approx>2 (rVr2 b)"
       
   302 | a2: "\<lbrakk>t1 \<approx>2 t2; s1 \<approx>2 s2\<rbrakk> \<Longrightarrow> rAp2 t1 s1 \<approx>2 rAp2 t2 s2"
       
   303 | a3: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha2 fv_rtrm2 pi ({atom b}, s))) \<Longrightarrow> rLm2 a t \<approx>2 rLm2 b s"
       
   304 | a4: "\<lbrakk>\<exists>pi. ((rbv2 bt, t) \<approx>gen alpha2 fv_rtrm2 pi ((rbv2 bs), s));
       
   305         \<exists>pi. ((rbv2 bt, bt) \<approx>gen alpha2a fv_rassign pi (rbv2 bs, bs))\<rbrakk>
       
   306         \<Longrightarrow> rLt2 bt t \<approx>2 rLt2 bs s"
       
   307 | a5: "\<lbrakk>a = b; t \<approx>2 s\<rbrakk> \<Longrightarrow> rAs a t \<approx>2a rAs b s" (* This way rbv2 can be lifted *)
       
   308 
       
   309 lemma alpha2_equivp:
       
   310   "equivp alpha2"
       
   311   "equivp alpha2a"
       
   312   sorry
       
   313 
       
   314 quotient_type
       
   315   trm2 = rtrm2 / alpha2
       
   316 and
       
   317   assign = rassign / alpha2a
       
   318   by (auto intro: alpha2_equivp)
       
   319 
       
   320 
       
   321 
       
   322 section {*** lets with many assignments ***}
       
   323 
       
   324 datatype trm3 =
       
   325   Vr3 "name"
       
   326 | Ap3 "trm3" "trm3"
       
   327 | Lm3 "name" "trm3" --"bind (name) in (trm3)"
       
   328 | Lt3 "assigns" "trm3" --"bind (bv3 assigns) in (trm3)"
       
   329 and assigns =
       
   330   ANil
       
   331 | ACons "name" "trm3" "assigns"
       
   332 
       
   333 (* to be given by the user *)
       
   334 primrec 
       
   335   bv3
       
   336 where
       
   337   "bv3 ANil = {}"
       
   338 | "bv3 (ACons x t as) = {atom x} \<union> (bv3 as)"
       
   339 
       
   340 local_setup {* define_raw_fv "Terms.trm3"
       
   341   [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term bv3}, 0)], [(SOME @{term bv3}, 0)]]],
       
   342    [[], [[], [], []]]] *}
       
   343 print_theorems
       
   344 
       
   345 setup {* snd o define_raw_perms ["rtrm3", "assigns"] ["Terms.trm3", "Terms.assigns"] *}
       
   346 
       
   347 inductive
       
   348   alpha3 :: "trm3 \<Rightarrow> trm3 \<Rightarrow> bool" ("_ \<approx>3 _" [100, 100] 100)
       
   349 and
       
   350   alpha3a :: "assigns \<Rightarrow> assigns \<Rightarrow> bool" ("_ \<approx>3a _" [100, 100] 100)
       
   351 where
       
   352   a1: "a = b \<Longrightarrow> (Vr3 a) \<approx>3 (Vr3 b)"
       
   353 | a2: "\<lbrakk>t1 \<approx>3 t2; s1 \<approx>3 s2\<rbrakk> \<Longrightarrow> Ap3 t1 s1 \<approx>3 Ap3 t2 s2"
       
   354 | a3: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha3 fv_rtrm3 pi ({atom b}, s))) \<Longrightarrow> Lm3 a t \<approx>3 Lm3 b s"
       
   355 | a4: "\<lbrakk>\<exists>pi. ((bv3 bt, t) \<approx>gen alpha3 fv_trm3 pi ((bv3 bs), s));
       
   356         \<exists>pi. ((bv3 bt, bt) \<approx>gen alpha3a fv_assign pi (bv3 bs, bs))\<rbrakk>
       
   357         \<Longrightarrow> Lt3 bt t \<approx>3 Lt3 bs s"
       
   358 | a5: "ANil \<approx>3a ANil"
       
   359 | a6: "\<lbrakk>a = b; t \<approx>3 s; tt \<approx>3a st\<rbrakk> \<Longrightarrow> ACons a t tt \<approx>3a ACons b s st"
       
   360 
       
   361 lemma alpha3_equivp:
       
   362   "equivp alpha3"
       
   363   "equivp alpha3a"
       
   364   sorry
       
   365 
       
   366 quotient_type
       
   367   qtrm3 = trm3 / alpha3
       
   368 and
       
   369   qassigns = assigns / alpha3a
       
   370   by (auto intro: alpha3_equivp)
       
   371 
       
   372 
       
   373 section {*** lam with indirect list recursion ***}
       
   374 
       
   375 datatype trm4 =
       
   376   Vr4 "name"
       
   377 | Ap4 "trm4" "trm4 list"
       
   378 | Lm4 "name" "trm4"  --"bind (name) in (trm)"
       
   379 print_theorems
       
   380 
       
   381 thm trm4.recs
       
   382 
       
   383 local_setup {* define_raw_fv "Terms.trm4" [
       
   384   [[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]]], [[], [[], []]]  ] *}
       
   385 print_theorems
       
   386 
       
   387 (* there cannot be a clause for lists, as *)
       
   388 (* permutations are  already defined in Nominal (also functions, options, and so on) *)
       
   389 setup {* snd o define_raw_perms ["trm4"] ["Terms.trm4"] *}
       
   390 
       
   391 (* "repairing" of the permute function *)
       
   392 lemma repaired:
       
   393   fixes ts::"trm4 list"
       
   394   shows "permute_trm4_list p ts = p \<bullet> ts"
       
   395   apply(induct ts)
       
   396   apply(simp_all)
       
   397   done
       
   398 
       
   399 thm permute_trm4_permute_trm4_list.simps
       
   400 thm permute_trm4_permute_trm4_list.simps[simplified repaired]
       
   401 
       
   402 inductive
       
   403     alpha4 :: "trm4 \<Rightarrow> trm4 \<Rightarrow> bool" ("_ \<approx>4 _" [100, 100] 100)
       
   404 and alpha4list :: "trm4 list \<Rightarrow> trm4 list \<Rightarrow> bool" ("_ \<approx>4list _" [100, 100] 100) 
       
   405 where
       
   406   a1: "a = b \<Longrightarrow> (Vr4 a) \<approx>4 (Vr4 b)"
       
   407 | a2: "\<lbrakk>t1 \<approx>4 t2; s1 \<approx>4list s2\<rbrakk> \<Longrightarrow> Ap4 t1 s1 \<approx>4 Ap4 t2 s2"
       
   408 | a3: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha4 fv_rtrm4 pi ({atom b}, s))) \<Longrightarrow> Lm4 a t \<approx>4 Lm4 b s"
       
   409 | a5: "[] \<approx>4list []"
       
   410 | a6: "\<lbrakk>t \<approx>4 s; ts \<approx>4list ss\<rbrakk> \<Longrightarrow> (t#ts) \<approx>4list (s#ss)"
       
   411 
       
   412 lemma alpha4_equivp: "equivp alpha4" sorry
       
   413 lemma alpha4list_equivp: "equivp alpha4list" sorry
       
   414 
       
   415 quotient_type 
       
   416   qtrm4 = trm4 / alpha4 and
       
   417   qtrm4list = "trm4 list" / alpha4list
       
   418   by (simp_all add: alpha4_equivp alpha4list_equivp)
       
   419 
       
   420 
       
   421 datatype rtrm5 =
       
   422   rVr5 "name"
       
   423 | rAp5 "rtrm5" "rtrm5"
       
   424 | rLt5 "rlts" "rtrm5" --"bind (bv5 lts) in (rtrm5)"
       
   425 and rlts =
       
   426   rLnil
       
   427 | rLcons "name" "rtrm5" "rlts"
       
   428 
       
   429 primrec
       
   430   rbv5
       
   431 where
       
   432   "rbv5 rLnil = {}"
       
   433 | "rbv5 (rLcons n t ltl) = {atom n} \<union> (rbv5 ltl)"
       
   434 
       
   435 local_setup {* define_raw_fv "Terms.rtrm5" [
       
   436   [[[]], [[], []], [[(SOME @{term rbv5}, 0)], [(SOME @{term rbv5}, 0)]]], [[], [[], [], []]]  ] *}
       
   437 print_theorems
       
   438 
       
   439 setup {* snd o define_raw_perms ["rtrm5", "rlts"] ["Terms.rtrm5", "Terms.rlts"] *}
       
   440 print_theorems
       
   441 
       
   442 inductive
       
   443   alpha5 :: "rtrm5 \<Rightarrow> rtrm5 \<Rightarrow> bool" ("_ \<approx>5 _" [100, 100] 100)
       
   444 and
       
   445   alphalts :: "rlts \<Rightarrow> rlts \<Rightarrow> bool" ("_ \<approx>l _" [100, 100] 100)
       
   446 where
       
   447   a1: "a = b \<Longrightarrow> (rVr5 a) \<approx>5 (rVr5 b)"
       
   448 | a2: "\<lbrakk>t1 \<approx>5 t2; s1 \<approx>5 s2\<rbrakk> \<Longrightarrow> rAp5 t1 s1 \<approx>5 rAp5 t2 s2"
       
   449 | a3: "\<lbrakk>\<exists>pi. ((rbv5 l1, t1) \<approx>gen alpha5 fv_rtrm5 pi (rbv5 l2, t2)); 
       
   450         \<exists>pi. ((rbv5 l1, l1) \<approx>gen alphalts fv_rlts pi (rbv5 l2, l2))\<rbrakk>
       
   451         \<Longrightarrow> rLt5 l1 t1 \<approx>5 rLt5 l2 t2"
       
   452 | a4: "rLnil \<approx>l rLnil"
       
   453 | a5: "ls1 \<approx>l ls2 \<Longrightarrow> t1 \<approx>5 t2 \<Longrightarrow> n1 = n2 \<Longrightarrow> rLcons n1 t1 ls1 \<approx>l rLcons n2 t2 ls2"
       
   454 
       
   455 print_theorems
       
   456 
       
   457 lemma alpha5_inj:
       
   458   "((rVr5 a) \<approx>5 (rVr5 b)) = (a = b)"
       
   459   "(rAp5 t1 s1 \<approx>5 rAp5 t2 s2) = (t1 \<approx>5 t2 \<and> s1 \<approx>5 s2)"
       
   460   "(rLt5 l1 t1 \<approx>5 rLt5 l2 t2) = ((\<exists>pi. ((rbv5 l1, t1) \<approx>gen alpha5 fv_rtrm5 pi (rbv5 l2, t2))) \<and>
       
   461          (\<exists>pi. ((rbv5 l1, l1) \<approx>gen alphalts fv_rlts pi (rbv5 l2, l2))))"
       
   462   "rLnil \<approx>l rLnil"
       
   463   "(rLcons n1 t1 ls1 \<approx>l rLcons n2 t2 ls2) = (n1 = n2 \<and> ls1 \<approx>l ls2 \<and> t1 \<approx>5 t2)"
       
   464 apply -
       
   465 apply (simp_all add: alpha5_alphalts.intros)
       
   466 apply rule
       
   467 apply (erule alpha5.cases)
       
   468 apply (simp_all add: alpha5_alphalts.intros)
       
   469 apply rule
       
   470 apply (erule alpha5.cases)
       
   471 apply (simp_all add: alpha5_alphalts.intros)
       
   472 apply rule
       
   473 apply (erule alpha5.cases)
       
   474 apply (simp_all add: alpha5_alphalts.intros)
       
   475 apply rule
       
   476 apply (erule alphalts.cases)
       
   477 apply (simp_all add: alpha5_alphalts.intros)
       
   478 done
       
   479 
       
   480 lemma alpha5_equivps:
       
   481   shows "equivp alpha5"
       
   482   and   "equivp alphalts"
       
   483 sorry
       
   484 
       
   485 quotient_type
       
   486   trm5 = rtrm5 / alpha5
       
   487 and
       
   488   lts = rlts / alphalts
       
   489   by (auto intro: alpha5_equivps)
       
   490 
       
   491 quotient_definition
       
   492   "Vr5 :: name \<Rightarrow> trm5"
       
   493 is
       
   494   "rVr5"
       
   495 
       
   496 quotient_definition
       
   497   "Ap5 :: trm5 \<Rightarrow> trm5 \<Rightarrow> trm5"
       
   498 is
       
   499   "rAp5"
       
   500 
       
   501 quotient_definition
       
   502   "Lt5 :: lts \<Rightarrow> trm5 \<Rightarrow> trm5"
       
   503 is
       
   504   "rLt5"
       
   505 
       
   506 quotient_definition
       
   507   "Lnil :: lts"
       
   508 is
       
   509   "rLnil"
       
   510 
       
   511 quotient_definition
       
   512   "Lcons :: name \<Rightarrow> trm5 \<Rightarrow> lts \<Rightarrow> lts"
       
   513 is
       
   514   "rLcons"
       
   515 
       
   516 quotient_definition
       
   517    "fv_trm5 :: trm5 \<Rightarrow> atom set"
       
   518 is
       
   519   "fv_rtrm5"
       
   520 
       
   521 quotient_definition
       
   522    "fv_lts :: lts \<Rightarrow> atom set"
       
   523 is
       
   524   "fv_rlts"
       
   525 
       
   526 quotient_definition
       
   527    "bv5 :: lts \<Rightarrow> atom set"
       
   528 is
       
   529   "rbv5"
       
   530 
       
   531 lemma rbv5_eqvt:
       
   532   "pi \<bullet> (rbv5 x) = rbv5 (pi \<bullet> x)"
       
   533 sorry
       
   534 
       
   535 lemma fv_rtrm5_eqvt:
       
   536   "pi \<bullet> (fv_rtrm5 x) = fv_rtrm5 (pi \<bullet> x)"
       
   537 sorry
       
   538 
       
   539 lemma fv_rlts_eqvt:
       
   540   "pi \<bullet> (fv_rlts x) = fv_rlts (pi \<bullet> x)"
       
   541 sorry
       
   542 
       
   543 lemma alpha5_eqvt:
       
   544   "xa \<approx>5 y \<Longrightarrow> (x \<bullet> xa) \<approx>5 (x \<bullet> y)"
       
   545   "xb \<approx>l ya \<Longrightarrow> (x \<bullet> xb) \<approx>l (x \<bullet> ya)"
       
   546   apply(induct rule: alpha5_alphalts.inducts)
       
   547   apply (simp_all add: alpha5_inj)
       
   548   apply (erule exE)+
       
   549   apply(unfold alpha_gen)
       
   550   apply (erule conjE)+
       
   551   apply (rule conjI)
       
   552   apply (rule_tac x="x \<bullet> pi" in exI)
       
   553   apply (rule conjI)
       
   554   apply(rule_tac ?p1="- x" in permute_eq_iff[THEN iffD1])
       
   555   apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rtrm5_eqvt)
       
   556   apply(rule conjI)
       
   557   apply(rule_tac ?p1="- x" in fresh_star_permute_iff[THEN iffD1])
       
   558   apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rtrm5_eqvt)
       
   559   apply (subst permute_eqvt[symmetric])
       
   560   apply (simp)
       
   561   apply (rule_tac x="x \<bullet> pia" in exI)
       
   562   apply (rule conjI)
       
   563   apply(rule_tac ?p1="- x" in permute_eq_iff[THEN iffD1])
       
   564   apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rlts_eqvt)
       
   565   apply(rule conjI)
       
   566   apply(rule_tac ?p1="- x" in fresh_star_permute_iff[THEN iffD1])
       
   567   apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rlts_eqvt)
       
   568   apply (subst permute_eqvt[symmetric])
       
   569   apply (simp)
       
   570   done
       
   571 
       
   572 lemma alpha5_rfv:
       
   573   "(t \<approx>5 s \<Longrightarrow> fv_rtrm5 t = fv_rtrm5 s)"
       
   574   "(l \<approx>l m \<Longrightarrow> fv_rlts l = fv_rlts m)"
       
   575   apply(induct rule: alpha5_alphalts.inducts)
       
   576   apply(simp_all add: alpha_gen)
       
   577   done
       
   578 
       
   579 lemma bv_list_rsp:
       
   580   shows "x \<approx>l y \<Longrightarrow> rbv5 x = rbv5 y"
       
   581   apply(induct rule: alpha5_alphalts.inducts(2))
       
   582   apply(simp_all)
       
   583   done
       
   584 
       
   585 lemma [quot_respect]:
       
   586   "(alphalts ===> op =) fv_rlts fv_rlts"
       
   587   "(alpha5 ===> op =) fv_rtrm5 fv_rtrm5"
       
   588   "(alphalts ===> op =) rbv5 rbv5"
       
   589   "(op = ===> alpha5) rVr5 rVr5"
       
   590   "(alpha5 ===> alpha5 ===> alpha5) rAp5 rAp5"
       
   591   "(alphalts ===> alpha5 ===> alpha5) rLt5 rLt5"
       
   592   "(alphalts ===> alpha5 ===> alpha5) rLt5 rLt5"
       
   593   "(op = ===> alpha5 ===> alphalts ===> alphalts) rLcons rLcons"
       
   594   "(op = ===> alpha5 ===> alpha5) permute permute"
       
   595   "(op = ===> alphalts ===> alphalts) permute permute"
       
   596   apply (simp_all add: alpha5_inj alpha5_rfv alpha5_eqvt bv_list_rsp)
       
   597   apply (clarify) apply (rule conjI)
       
   598   apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv)
       
   599   apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv)
       
   600   apply (clarify) apply (rule conjI)
       
   601   apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv)
       
   602   apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv)
       
   603   done
       
   604 
       
   605 lemma
       
   606   shows "(alphalts ===> op =) rbv5 rbv5"
       
   607   by (simp add: bv_list_rsp)
       
   608 
       
   609 lemmas trm5_lts_inducts = rtrm5_rlts.inducts[quot_lifted]
       
   610 
       
   611 instantiation trm5 and lts :: pt
       
   612 begin
       
   613 
       
   614 quotient_definition
       
   615   "permute_trm5 :: perm \<Rightarrow> trm5 \<Rightarrow> trm5"
       
   616 is
       
   617   "permute :: perm \<Rightarrow> rtrm5 \<Rightarrow> rtrm5"
       
   618 
       
   619 quotient_definition
       
   620   "permute_lts :: perm \<Rightarrow> lts \<Rightarrow> lts"
       
   621 is
       
   622   "permute :: perm \<Rightarrow> rlts \<Rightarrow> rlts"
       
   623 
       
   624 lemma trm5_lts_zero:
       
   625   "0 \<bullet> (x\<Colon>trm5) = x"
       
   626   "0 \<bullet> (y\<Colon>lts) = y"
       
   627 apply(induct x and y rule: trm5_lts_inducts)
       
   628 apply(simp_all add: permute_rtrm5_permute_rlts.simps[quot_lifted])
       
   629 done
       
   630 
       
   631 lemma trm5_lts_plus:
       
   632   "(p + q) \<bullet> (x\<Colon>trm5) = p \<bullet> q \<bullet> x"
       
   633   "(p + q) \<bullet> (y\<Colon>lts) = p \<bullet> q \<bullet> y"
       
   634 apply(induct x and y rule: trm5_lts_inducts)
       
   635 apply(simp_all add: permute_rtrm5_permute_rlts.simps[quot_lifted])
       
   636 done
       
   637 
       
   638 instance
       
   639 apply default
       
   640 apply (simp_all add: trm5_lts_zero trm5_lts_plus)
       
   641 done
       
   642 
       
   643 end
       
   644 
       
   645 lemmas permute_trm5_lts = permute_rtrm5_permute_rlts.simps[quot_lifted]
       
   646 
       
   647 lemmas alpha5_INJ = alpha5_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]
       
   648 
       
   649 lemmas bv5[simp] = rbv5.simps[quot_lifted]
       
   650 
       
   651 lemmas fv_trm5_lts[simp] = fv_rtrm5_fv_rlts.simps[quot_lifted]
       
   652 
       
   653 lemma lets_ok:
       
   654   "(Lt5 (Lcons x (Vr5 x) Lnil) (Vr5 x)) = (Lt5 (Lcons y (Vr5 y) Lnil) (Vr5 y))"
       
   655 apply (subst alpha5_INJ)
       
   656 apply (rule conjI)
       
   657 apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
       
   658 apply (simp only: alpha_gen)
       
   659 apply (simp add: permute_trm5_lts fresh_star_def)
       
   660 apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
       
   661 apply (simp only: alpha_gen)
       
   662 apply (simp add: permute_trm5_lts fresh_star_def)
       
   663 done
       
   664 
       
   665 lemma lets_ok2:
       
   666   "(Lt5 (Lcons x (Vr5 x) (Lcons y (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) =
       
   667    (Lt5 (Lcons y (Vr5 y) (Lcons x (Vr5 x) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))"
       
   668 apply (subst alpha5_INJ)
       
   669 apply (rule conjI)
       
   670 apply (rule_tac x="0 :: perm" in exI)
       
   671 apply (simp only: alpha_gen)
       
   672 apply (simp add: permute_trm5_lts fresh_star_def)
       
   673 apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
       
   674 apply (simp only: alpha_gen)
       
   675 apply (simp add: permute_trm5_lts fresh_star_def)
       
   676 done
       
   677 
       
   678 
       
   679 lemma lets_not_ok1:
       
   680   "x \<noteq> y \<Longrightarrow> (Lt5 (Lcons x (Vr5 x) (Lcons y (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) \<noteq>
       
   681              (Lt5 (Lcons y (Vr5 x) (Lcons x (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))"
       
   682 apply (subst alpha5_INJ(3))
       
   683 apply(clarify)
       
   684 apply (simp add: alpha_gen)
       
   685 apply (simp add: permute_trm5_lts fresh_star_def)
       
   686 apply (simp add: alpha5_INJ(5))
       
   687 apply(clarify)
       
   688 apply (simp add: alpha5_INJ(2))
       
   689 apply (simp only: alpha5_INJ(1))
       
   690 done
       
   691 
       
   692 lemma distinct_helper:
       
   693   shows "\<not>(rVr5 x \<approx>5 rAp5 y z)"
       
   694   apply auto
       
   695   apply (erule alpha5.cases)
       
   696   apply (simp_all only: rtrm5.distinct)
       
   697   done
       
   698 
       
   699 lemma distinct_helper2:
       
   700   shows "(Vr5 x) \<noteq> (Ap5 y z)"
       
   701   by (lifting distinct_helper)
       
   702 
       
   703 lemma lets_nok:
       
   704   "x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow>
       
   705    (Lt5 (Lcons x (Ap5 (Vr5 z) (Vr5 z)) (Lcons y (Vr5 z) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) \<noteq>
       
   706    (Lt5 (Lcons y (Vr5 z) (Lcons x (Ap5 (Vr5 z) (Vr5 z)) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))"
       
   707 apply (subst alpha5_INJ)
       
   708 apply (simp only: alpha_gen permute_trm5_lts fresh_star_def)
       
   709 apply (subst alpha5_INJ(5))
       
   710 apply (subst alpha5_INJ(5))
       
   711 apply (simp add: distinct_helper2)
       
   712 done
       
   713 
       
   714 
       
   715 (* example with a bn function defined over the type itself *)
       
   716 datatype rtrm6 =
       
   717   rVr6 "name"
       
   718 | rLm6 "name" "rtrm6"
       
   719 | rLt6 "rtrm6" "rtrm6" --"bind (bv6 left) in (right)"
       
   720 
       
   721 primrec
       
   722   rbv6
       
   723 where
       
   724   "rbv6 (rVr6 n) = {}"
       
   725 | "rbv6 (rLm6 n t) = {atom n} \<union> rbv6 t"
       
   726 | "rbv6 (rLt6 l r) = rbv6 l \<union> rbv6 r"
       
   727 
       
   728 local_setup {* define_raw_fv "Terms.rtrm6" [
       
   729   [[[]], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term rbv6}, 0)], [(SOME @{term rbv6}, 0)]]]] *}
       
   730 print_theorems 
       
   731 
       
   732 setup {* snd o define_raw_perms ["rtrm6"] ["Terms.rtrm6"] *}
       
   733 print_theorems
       
   734 
       
   735 inductive
       
   736   alpha6 :: "rtrm6 \<Rightarrow> rtrm6 \<Rightarrow> bool" ("_ \<approx>6 _" [100, 100] 100)
       
   737 where
       
   738   a1: "a = b \<Longrightarrow> (rVr6 a) \<approx>6 (rVr6 b)"
       
   739 | a2: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha6 fv_rtrm6 pi ({atom b}, s))) \<Longrightarrow> rLm6 a t \<approx>6 rLm6 b s"
       
   740 | a3: "(\<exists>pi. (((rbv6 t1), s1) \<approx>gen alpha6 fv_rtrm6 pi ((rbv6 t2), s2))) \<Longrightarrow> rLt6 t1 s1 \<approx>6 rLt6 t2 s2"
       
   741 
       
   742 lemma alpha6_equivps:
       
   743   shows "equivp alpha6"
       
   744 sorry
       
   745 
       
   746 quotient_type
       
   747   trm6 = rtrm6 / alpha6
       
   748   by (auto intro: alpha6_equivps)
       
   749 
       
   750 quotient_definition
       
   751   "Vr6 :: name \<Rightarrow> trm6"
       
   752 is
       
   753   "rVr6"
       
   754 
       
   755 quotient_definition
       
   756   "Lm6 :: name \<Rightarrow> trm6 \<Rightarrow> trm6"
       
   757 is
       
   758   "rLm6"
       
   759 
       
   760 quotient_definition
       
   761   "Lt6 :: trm6 \<Rightarrow> trm6 \<Rightarrow> trm6"
       
   762 is
       
   763   "rLt6"
       
   764 
       
   765 quotient_definition
       
   766    "fv_trm6 :: trm6 \<Rightarrow> atom set"
       
   767 is
       
   768   "fv_rtrm6"
       
   769 
       
   770 quotient_definition
       
   771    "bv6 :: trm6 \<Rightarrow> atom set"
       
   772 is
       
   773   "rbv6"
       
   774 
       
   775 lemma [quot_respect]:
       
   776   "(op = ===> alpha6 ===> alpha6) permute permute"
       
   777 apply auto (* will work with eqvt *)
       
   778 sorry
       
   779 
       
   780 (* Definitely not true , see lemma below *)
       
   781 
       
   782 lemma [quot_respect]:"(alpha6 ===> op =) rbv6 rbv6"
       
   783 apply simp apply clarify
       
   784 apply (erule alpha6.induct)
       
   785 oops
       
   786 
       
   787 lemma "(a :: name) \<noteq> b \<Longrightarrow> \<not> (alpha6 ===> op =) rbv6 rbv6"
       
   788 apply simp
       
   789 apply (rule_tac x="rLm6 (a::name) (rVr6 (a :: name))" in  exI)
       
   790 apply (rule_tac x="rLm6 (b::name) (rVr6 (b :: name))" in  exI)
       
   791 apply simp
       
   792 apply (rule a2)
       
   793 apply (rule_tac x="(a \<leftrightarrow> b)" in  exI)
       
   794 apply (simp add: alpha_gen fresh_star_def)
       
   795 apply (rule a1)
       
   796 apply (rule refl)
       
   797 done
       
   798 
       
   799 lemma [quot_respect]:"(alpha6 ===> op =) fv_rtrm6 fv_rtrm6"
       
   800 apply simp apply clarify
       
   801 apply (induct_tac x y rule: alpha6.induct)
       
   802 apply simp_all
       
   803 apply (erule exE)
       
   804 apply (simp_all add: alpha_gen)
       
   805 apply (erule conjE)+
       
   806 apply (erule exE)
       
   807 apply (erule conjE)+
       
   808 apply (simp)
       
   809 oops
       
   810 
       
   811 
       
   812 lemma [quot_respect]: "(op = ===> alpha6) rVr6 rVr6"
       
   813 by (simp_all add: a1)
       
   814 
       
   815 lemma [quot_respect]:
       
   816  "(op = ===> alpha6 ===> alpha6) rLm6 rLm6"
       
   817  "(alpha6 ===> alpha6 ===> alpha6) rLt6 rLt6"
       
   818 apply simp_all apply (clarify)
       
   819 apply (rule a2)
       
   820 apply (rule_tac x="0::perm" in exI)
       
   821 apply (simp add: alpha_gen)
       
   822 (* needs rfv6_rsp *) defer
       
   823 apply clarify
       
   824 apply (rule a3)
       
   825 apply (rule_tac x="0::perm" in exI)
       
   826 apply (simp add: alpha_gen)
       
   827 (* needs rbv6_rsp *)
       
   828 oops
       
   829 
       
   830 instantiation trm6 :: pt begin
       
   831 
       
   832 quotient_definition
       
   833   "permute_trm6 :: perm \<Rightarrow> trm6 \<Rightarrow> trm6"
       
   834 is
       
   835   "permute :: perm \<Rightarrow> rtrm6 \<Rightarrow> rtrm6"
       
   836 
       
   837 instance
       
   838 apply default
       
   839 sorry
       
   840 end
       
   841 
       
   842 lemma lifted_induct:
       
   843 "\<lbrakk>x1 = x2; \<And>a b. a = b \<Longrightarrow> P (Vr6 a) (Vr6 b);
       
   844  \<And>a t b s.
       
   845    \<exists>pi. fv_trm6 t - {atom a} = fv_trm6 s - {atom b} \<and>
       
   846         (fv_trm6 t - {atom a}) \<sharp>* pi \<and> pi \<bullet> t = s \<and> P (pi \<bullet> t) s \<Longrightarrow>
       
   847    P (Lm6 a t) (Lm6 b s);
       
   848  \<And>t1 s1 t2 s2.
       
   849    \<exists>pi. fv_trm6 s1 - bv6 t1 = fv_trm6 s2 - bv6 t2 \<and>
       
   850         (fv_trm6 s1 - bv6 t1) \<sharp>* pi \<and> pi \<bullet> s1 = s2 \<and> P (pi \<bullet> s1) s2 \<Longrightarrow>
       
   851    P (Lt6 t1 s1) (Lt6 t2 s2)\<rbrakk>
       
   852  \<Longrightarrow> P x1 x2"
       
   853 unfolding alpha_gen
       
   854 apply (lifting alpha6.induct[unfolded alpha_gen])
       
   855 apply injection
       
   856 (* notice unsolvable goals: (alpha6 ===> op =) rbv6 rbv6 *)
       
   857 oops
       
   858 
       
   859 lemma lifted_inject_a3:
       
   860  "\<exists>pi. fv_trm6 s1 - bv6 t1 = fv_trm6 s2 - bv6 t2 \<and>
       
   861     (fv_trm6 s1 - bv6 t1) \<sharp>* pi \<and> pi \<bullet> s1 = s2 \<Longrightarrow> Lt6 t1 s1 = Lt6 t2 s2"
       
   862 apply(lifting a3[unfolded alpha_gen])
       
   863 apply injection
       
   864 (* notice unsolvable goals: (alpha6 ===> op =) rbv6 rbv6 *)
       
   865 oops
       
   866 
       
   867 
       
   868 
       
   869 
       
   870 (* example with a respectful bn function defined over the type itself *)
       
   871 
       
   872 datatype rtrm7 =
       
   873   rVr7 "name"
       
   874 | rLm7 "name" "rtrm7"
       
   875 | rLt7 "rtrm7" "rtrm7" --"bind (bv7 left) in (right)"
       
   876 
       
   877 primrec
       
   878   rbv7
       
   879 where
       
   880   "rbv7 (rVr7 n) = {atom n}"
       
   881 | "rbv7 (rLm7 n t) = rbv7 t - {atom n}"
       
   882 | "rbv7 (rLt7 l r) = rbv7 l \<union> rbv7 r"
       
   883 
       
   884 local_setup {* define_raw_fv "Terms.rtrm7" [
       
   885   [[[]], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term rbv7}, 0)], [(SOME @{term rbv7}, 0)]]]] *}
       
   886 print_theorems 
       
   887 
       
   888 setup {* snd o define_raw_perms ["rtrm7"] ["Terms.rtrm7"] *}
       
   889 print_theorems
       
   890 
       
   891 inductive
       
   892   alpha7 :: "rtrm7 \<Rightarrow> rtrm7 \<Rightarrow> bool" ("_ \<approx>7 _" [100, 100] 100)
       
   893 where
       
   894   a1: "a = b \<Longrightarrow> (rVr7 a) \<approx>7 (rVr7 b)"
       
   895 | a2: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha7 fv_rtrm7 pi ({atom b}, s))) \<Longrightarrow> rLm7 a t \<approx>7 rLm7 b s"
       
   896 | a3: "(\<exists>pi. (((rbv7 t1), s1) \<approx>gen alpha7 fv_rtrm7 pi ((rbv7 t2), s2))) \<Longrightarrow> rLt7 t1 s1 \<approx>7 rLt7 t2 s2"
       
   897 
       
   898 lemma "(x::name) \<noteq> y \<Longrightarrow> \<not> (alpha7 ===> op =) rbv7 rbv7"
       
   899   apply simp
       
   900   apply (rule_tac x="rLt7 (rVr7 x) (rVr7 x)" in exI)
       
   901   apply (rule_tac x="rLt7 (rVr7 y) (rVr7 y)" in exI)
       
   902   apply simp
       
   903   apply (rule a3)
       
   904   apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
       
   905   apply (simp_all add: alpha_gen fresh_star_def)
       
   906   apply (rule a1)
       
   907   apply (rule refl)
       
   908 done
       
   909 
       
   910 
       
   911 
       
   912 
       
   913 
       
   914 datatype rfoo8 =
       
   915   Foo0 "name"
       
   916 | Foo1 "rbar8" "rfoo8" --"bind bv(bar) in foo"
       
   917 and rbar8 =
       
   918   Bar0 "name"
       
   919 | Bar1 "name" "name" "rbar8" --"bind second name in b"
       
   920 
       
   921 primrec
       
   922   rbv8
       
   923 where
       
   924   "rbv8 (Bar0 x) = {}"
       
   925 | "rbv8 (Bar1 v x b) = {atom v}"
       
   926 
       
   927 local_setup {* define_raw_fv "Terms.rfoo8" [
       
   928   [[[]], [[(SOME @{term rbv8}, 0)], [(SOME @{term rbv8}, 0)]]], [[[]], [[], [(NONE, 1)], [(NONE, 1)]]]] *}
       
   929 print_theorems 
       
   930 
       
   931 setup {* snd o define_raw_perms ["rfoo8", "rbar8"] ["Terms.rfoo8", "Terms.rbar8"] *}
       
   932 print_theorems
       
   933 
       
   934 inductive
       
   935   alpha8f :: "rfoo8 \<Rightarrow> rfoo8 \<Rightarrow> bool" ("_ \<approx>f _" [100, 100] 100)
       
   936 and
       
   937   alpha8b :: "rbar8 \<Rightarrow> rbar8 \<Rightarrow> bool" ("_ \<approx>b _" [100, 100] 100)
       
   938 where
       
   939   a1: "a = b \<Longrightarrow> (Foo0 a) \<approx>f (Foo0 b)"
       
   940 | a2: "a = b \<Longrightarrow> (Bar0 a) \<approx>b (Bar0 b)"
       
   941 | a3: "b1 \<approx>b b2 \<Longrightarrow> (\<exists>pi. (((rbv8 b1), t1) \<approx>gen alpha8f fv_rfoo8 pi ((rbv8 b2), t2))) \<Longrightarrow> Foo1 b1 t1 \<approx>f Foo1 b2 t2"
       
   942 | a4: "v1 = v2 \<Longrightarrow> (\<exists>pi. (({atom x1}, t1) \<approx>gen alpha8b fv_rbar8 pi ({atom x2}, t2))) \<Longrightarrow> Bar1 v1 x1 t1 \<approx>b Bar1 v2 x2 t2"
       
   943 
       
   944 lemma "(alpha8b ===> op =) rbv8 rbv8"
       
   945   apply simp apply clarify
       
   946   apply (erule alpha8f_alpha8b.inducts(2))
       
   947   apply (simp_all)
       
   948 done
       
   949 
       
   950 lemma fv_rbar8_rsp_hlp: "x \<approx>b y \<Longrightarrow> fv_rbar8 x = fv_rbar8 y"
       
   951   apply (erule alpha8f_alpha8b.inducts(2))
       
   952   apply (simp_all add: alpha_gen)
       
   953 done
       
   954 lemma "(alpha8b ===> op =) fv_rbar8 fv_rbar8"
       
   955   apply simp apply clarify apply (simp add: fv_rbar8_rsp_hlp)
       
   956 done
       
   957 
       
   958 lemma "(alpha8f ===> op =) fv_rfoo8 fv_rfoo8"
       
   959   apply simp apply clarify
       
   960   apply (erule alpha8f_alpha8b.inducts(1))
       
   961   apply (simp_all add: alpha_gen fv_rbar8_rsp_hlp)
       
   962   apply clarify
       
   963   apply (erule alpha8f_alpha8b.inducts(2))
       
   964   apply (simp_all)
       
   965 done
       
   966 
       
   967 
       
   968 
       
   969 
       
   970 
       
   971 
       
   972 datatype rlam9 =
       
   973   Var9 "name"
       
   974 | Lam9 "name" "rlam9" --"bind name in rlam"
       
   975 and rbla9 =
       
   976   Bla9 "rlam9" "rlam9" --"bind bv(first) in second"
       
   977 
       
   978 primrec
       
   979   rbv9
       
   980 where
       
   981   "rbv9 (Var9 x) = {}"
       
   982 | "rbv9 (Lam9 x b) = {atom x}"
       
   983 
       
   984 local_setup {* define_raw_fv "Terms.rlam9" [
       
   985   [[[]], [[(NONE, 0)], [(NONE, 0)]]], [[[(SOME @{term rbv9}, 0)], [(SOME @{term rbv9}, 0)]]]] *}
       
   986 print_theorems
       
   987 
       
   988 setup {* snd o define_raw_perms ["rlam9", "rbla9"] ["Terms.rlam9", "Terms.rbla9"] *}
       
   989 print_theorems
       
   990 
       
   991 inductive
       
   992   alpha9l :: "rlam9 \<Rightarrow> rlam9 \<Rightarrow> bool" ("_ \<approx>9l _" [100, 100] 100)
       
   993 and
       
   994   alpha9b :: "rbla9 \<Rightarrow> rbla9 \<Rightarrow> bool" ("_ \<approx>9b _" [100, 100] 100)
       
   995 where
       
   996   a1: "a = b \<Longrightarrow> (Var9 a) \<approx>9l (Var9 b)"
       
   997 | a4: "(\<exists>pi. (({atom x1}, t1) \<approx>gen alpha9l fv_rlam9 pi ({atom x2}, t2))) \<Longrightarrow> Lam9 x1 t1 \<approx>9l Lam9 x2 t2"
       
   998 | a3: "b1 \<approx>9l b2 \<Longrightarrow> (\<exists>pi. (((rbv9 b1), t1) \<approx>gen alpha9l fv_rlam9 pi ((rbv9 b2), t2))) \<Longrightarrow> Bla9 b1 t1 \<approx>9b Bla9 b2 t2"
       
   999 
       
  1000 quotient_type
       
  1001   lam9 = rlam9 / alpha9l and bla9 = rbla9 / alpha9b
       
  1002 sorry
       
  1003 
       
  1004 quotient_definition
       
  1005   "qVar9 :: name \<Rightarrow> lam9"
       
  1006 is
       
  1007   "Var9"
       
  1008 
       
  1009 quotient_definition
       
  1010   "qLam :: name \<Rightarrow> lam9 \<Rightarrow> lam9"
       
  1011 is
       
  1012   "Lam9"
       
  1013 
       
  1014 quotient_definition
       
  1015   "qBla9 :: lam9 \<Rightarrow> lam9 \<Rightarrow> bla9"
       
  1016 is
       
  1017   "Bla9"
       
  1018 
       
  1019 quotient_definition
       
  1020   "fv_lam9 :: lam9 \<Rightarrow> atom set"
       
  1021 is
       
  1022   "fv_rlam9"
       
  1023 
       
  1024 quotient_definition
       
  1025   "fv_bla9 :: bla9 \<Rightarrow> atom set"
       
  1026 is
       
  1027   "fv_rbla9"
       
  1028 
       
  1029 quotient_definition
       
  1030   "bv9 :: lam9 \<Rightarrow> atom set"
       
  1031 is
       
  1032   "rbv9"
       
  1033 
       
  1034 instantiation lam9 and bla9 :: pt
       
  1035 begin
       
  1036 
       
  1037 quotient_definition
       
  1038   "permute_lam9 :: perm \<Rightarrow> lam9 \<Rightarrow> lam9"
       
  1039 is
       
  1040   "permute :: perm \<Rightarrow> rlam9 \<Rightarrow> rlam9"
       
  1041 
       
  1042 quotient_definition
       
  1043   "permute_bla9 :: perm \<Rightarrow> bla9 \<Rightarrow> bla9"
       
  1044 is
       
  1045   "permute :: perm \<Rightarrow> rbla9 \<Rightarrow> rbla9"
       
  1046 
       
  1047 instance
       
  1048 sorry
       
  1049 
       
  1050 end
       
  1051 
       
  1052 lemma "\<lbrakk>b1 = b2; \<exists>pi. fv_lam9 t1 - bv9 b1 = fv_lam9 t2 - bv9 b2 \<and> (fv_lam9 t1 - bv9 b1) \<sharp>* pi \<and> pi \<bullet> t1 = t2\<rbrakk>
       
  1053  \<Longrightarrow> qBla9 b1 t1 = qBla9 b2 t2"
       
  1054 apply (lifting a3[unfolded alpha_gen])
       
  1055 apply injection
       
  1056 sorry
       
  1057 
       
  1058 
       
  1059 
       
  1060 
       
  1061 
       
  1062 
       
  1063 
       
  1064 
       
  1065 text {* type schemes *} 
       
  1066 datatype ty = 
       
  1067   Var "name" 
       
  1068 | Fun "ty" "ty"
       
  1069 
       
  1070 setup {* snd o define_raw_perms ["ty"] ["Terms.ty"] *}
       
  1071 print_theorems
       
  1072 
       
  1073 datatype tyS = 
       
  1074   All "name set" "ty" 
       
  1075 
       
  1076 setup {* snd o define_raw_perms ["tyS"] ["Terms.tyS"] *}
       
  1077 print_theorems
       
  1078 
       
  1079 abbreviation
       
  1080   "atoms xs \<equiv> {atom x| x. x \<in> xs}"
       
  1081 
       
  1082 local_setup {* define_raw_fv "Terms.ty" [[[[]], [[], []]]] *}
       
  1083 print_theorems 
       
  1084 
       
  1085 (*
       
  1086 doesn't work yet
       
  1087 local_setup {* define_raw_fv "Terms.tyS" [[[[], []]]] *}
       
  1088 print_theorems
       
  1089 *)
       
  1090 
       
  1091 primrec
       
  1092   fv_tyS
       
  1093 where 
       
  1094   "fv_tyS (All xs T) = (fv_ty T - atoms xs)"
       
  1095 
       
  1096 inductive
       
  1097   alpha_tyS :: "tyS \<Rightarrow> tyS \<Rightarrow> bool" ("_ \<approx>tyS _" [100, 100] 100)
       
  1098 where
       
  1099   a1: "\<exists>pi. ((atoms xs1, T1) \<approx>gen (op =) fv_ty pi (atoms xs2, T2)) 
       
  1100         \<Longrightarrow> All xs1 T1 \<approx>tyS All xs2 T2"
       
  1101 
       
  1102 lemma
       
  1103   shows "All {a, b} (Fun (Var a) (Var b)) \<approx>tyS All {b, a} (Fun (Var a) (Var b))"
       
  1104   apply(rule a1)
       
  1105   apply(simp add: alpha_gen)
       
  1106   apply(rule_tac x="0::perm" in exI)
       
  1107   apply(simp add: fresh_star_def)
       
  1108   done
       
  1109 
       
  1110 lemma
       
  1111   shows "All {a, b} (Fun (Var a) (Var b)) \<approx>tyS All {a, b} (Fun (Var b) (Var a))"
       
  1112   apply(rule a1)
       
  1113   apply(simp add: alpha_gen)
       
  1114   apply(rule_tac x="(atom a \<rightleftharpoons> atom b)" in exI)
       
  1115   apply(simp add: fresh_star_def)
       
  1116   done
       
  1117 
       
  1118 lemma
       
  1119   shows "All {a, b, c} (Fun (Var a) (Var b)) \<approx>tyS All {a, b} (Fun (Var a) (Var b))"
       
  1120   apply(rule a1)
       
  1121   apply(simp add: alpha_gen)
       
  1122   apply(rule_tac x="0::perm" in exI)
       
  1123   apply(simp add: fresh_star_def)
       
  1124   done
       
  1125 
       
  1126 lemma
       
  1127   assumes a: "a \<noteq> b"
       
  1128   shows "\<not>(All {a, b} (Fun (Var a) (Var b)) \<approx>tyS All {c} (Fun (Var c) (Var c)))"
       
  1129   using a
       
  1130   apply(clarify)
       
  1131   apply(erule alpha_tyS.cases)
       
  1132   apply(simp add: alpha_gen)
       
  1133   apply(erule conjE)+
       
  1134   apply(erule exE)
       
  1135   apply(erule conjE)+
       
  1136   apply(clarify)
       
  1137   apply(simp)
       
  1138   apply(simp add: fresh_star_def)
       
  1139   apply(auto)
       
  1140   done
       
  1141 
       
  1142 
       
  1143 end