equal
  deleted
  inserted
  replaced
  
    
    
|    343 lemma supp_nat_of: |    343 lemma supp_nat_of: | 
|    344   shows "supp nat_of = UNIV" |    344   shows "supp nat_of = UNIV" | 
|    345   using not_fresh_nat_of [unfolded fresh_def] by auto |    345   using not_fresh_nat_of [unfolded fresh_def] by auto | 
|    346  |    346  | 
|    347  |    347  | 
|         |    348 section {* Support for sets of atoms *} | 
|         |    349  | 
|         |    350 lemma supp_finite_atom_set: | 
|         |    351   fixes S::"atom set" | 
|         |    352   assumes "finite S" | 
|         |    353   shows "supp S = S" | 
|         |    354   apply(rule finite_supp_unique) | 
|         |    355   apply(simp add: supports_def) | 
|         |    356   apply(auto simp add: permute_set_eq_vimage vimage_def swap_atom)[1] | 
|         |    357   apply(rule assms) | 
|         |    358   apply(auto simp add: permute_set_eq swap_atom)[1] | 
|         |    359 done | 
|         |    360  | 
|         |    361  | 
|    348 (* |    362 (* | 
|    349 section {* Characterisation of the support of sets of atoms *} |         | 
|    350  |         | 
|    351 lemma swap_set_ineq: |         | 
|    352   fixes a b::"'a::at" |         | 
|    353   assumes "a \<in> S" "b \<notin> S" |         | 
|    354   shows "(a \<leftrightarrow> b) \<bullet> S \<noteq> S" |         | 
|    355 using assms |         | 
|    356 unfolding permute_set_eq  |         | 
|    357 by (auto simp add: permute_flip_at) |         | 
|    358  |         | 
|    359 lemma supp_finite: |         | 
|    360   fixes S::"'a::at set" |         | 
|    361   assumes asm: "finite S" |         | 
|    362   shows "(supp S) = atom ` S" |         | 
|    363 sorry |         | 
|    364  |         | 
|    365 lemma supp_infinite: |    363 lemma supp_infinite: | 
|    366   fixes S::"atom set" |    364   fixes S::"atom set" | 
|    367   assumes asm: "finite (UNIV - S)" |    365   assumes asm: "finite (UNIV - S)" | 
|    368   shows "(supp S) = (UNIV - S)" |    366   shows "(supp S) = (UNIV - S)" | 
|    369 apply(rule finite_supp_unique) |    367 apply(rule finite_supp_unique) |