1 (* Title: nominal_library.ML |
|
2 Author: Christian Urban |
|
3 |
|
4 Basic functions for nominal. |
|
5 *) |
|
6 |
|
7 signature NOMINAL_LIBRARY = |
|
8 sig |
|
9 val is_true: term -> bool |
|
10 |
|
11 val last2: 'a list -> 'a * 'a |
|
12 |
|
13 val dest_listT: typ -> typ |
|
14 |
|
15 val size_const: typ -> term |
|
16 |
|
17 val sum_case_const: typ -> typ -> typ -> term |
|
18 val mk_sum_case: term -> term -> term |
|
19 |
|
20 val mk_minus: term -> term |
|
21 val mk_plus: term -> term -> term |
|
22 |
|
23 val perm_ty: typ -> typ |
|
24 val mk_perm_ty: typ -> term -> term -> term |
|
25 val mk_perm: term -> term -> term |
|
26 val dest_perm: term -> term * term |
|
27 |
|
28 val mk_sort_of: term -> term |
|
29 val atom_ty: typ -> typ |
|
30 val mk_atom_ty: typ -> term -> term |
|
31 val mk_atom: term -> term |
|
32 |
|
33 val supp_ty: typ -> typ |
|
34 val supp_const: typ -> term |
|
35 val mk_supp_ty: typ -> term -> term |
|
36 val mk_supp: term -> term |
|
37 |
|
38 val supp_rel_ty: typ -> typ |
|
39 val supp_rel_const: typ -> term |
|
40 val mk_supp_rel_ty: typ -> term -> term -> term |
|
41 val mk_supp_rel: term -> term -> term |
|
42 |
|
43 val supports_const: typ -> term |
|
44 val mk_supports_ty: typ -> term -> term -> term |
|
45 val mk_supports: term -> term -> term |
|
46 |
|
47 val finite_const: typ -> term |
|
48 val mk_finite_ty: typ -> term -> term |
|
49 val mk_finite: term -> term |
|
50 |
|
51 |
|
52 val mk_equiv: thm -> thm |
|
53 val safe_mk_equiv: thm -> thm |
|
54 |
|
55 val mk_diff: term * term -> term |
|
56 val mk_append: term * term -> term |
|
57 val mk_union: term * term -> term |
|
58 val fold_union: term list -> term |
|
59 val fold_append: term list -> term |
|
60 val mk_conj: term * term -> term |
|
61 val fold_conj: term list -> term |
|
62 |
|
63 (* fresh arguments for a term *) |
|
64 val fresh_args: Proof.context -> term -> term list |
|
65 |
|
66 (* datatype operations *) |
|
67 type cns_info = (term * typ * typ list * bool list) list |
|
68 |
|
69 val all_dtyps: Datatype_Aux.descr -> (string * sort) list -> typ list |
|
70 val nth_dtyp: Datatype_Aux.descr -> (string * sort) list -> int -> typ |
|
71 val all_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> cns_info list |
|
72 val nth_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> int -> cns_info |
|
73 val prefix_dt_names: Datatype_Aux.descr -> (string * sort) list -> string -> string list |
|
74 |
|
75 (* tactics for function package *) |
|
76 val pat_completeness_simp: thm list -> Proof.context -> tactic |
|
77 val prove_termination: thm list -> Proof.context -> Function.info * local_theory |
|
78 |
|
79 (* transformations of premises in inductions *) |
|
80 val transform_prem1: Proof.context -> string list -> thm -> thm |
|
81 val transform_prem2: Proof.context -> string list -> thm -> thm |
|
82 |
|
83 (* transformation into the object logic *) |
|
84 val atomize: thm -> thm |
|
85 |
|
86 end |
|
87 |
|
88 |
|
89 structure Nominal_Library: NOMINAL_LIBRARY = |
|
90 struct |
|
91 |
|
92 fun is_true @{term "Trueprop True"} = true |
|
93 | is_true _ = false |
|
94 |
|
95 fun last2 [] = raise Empty |
|
96 | last2 [_] = raise Empty |
|
97 | last2 [x, y] = (x, y) |
|
98 | last2 (_ :: xs) = last2 xs |
|
99 |
|
100 fun dest_listT (Type (@{type_name list}, [T])) = T |
|
101 | dest_listT T = raise TYPE ("dest_listT: list type expected", [T], []) |
|
102 |
|
103 fun size_const ty = Const (@{const_name size}, ty --> @{typ nat}) |
|
104 |
|
105 fun sum_case_const ty1 ty2 ty3 = |
|
106 Const (@{const_name sum_case}, [ty1 --> ty3, ty2 --> ty3, Type (@{type_name sum}, [ty1, ty2])] ---> ty3) |
|
107 fun mk_sum_case trm1 trm2 = |
|
108 let |
|
109 val ([ty1], ty3) = strip_type (fastype_of trm1) |
|
110 val ty2 = domain_type (fastype_of trm2) |
|
111 in |
|
112 sum_case_const ty1 ty2 ty3 $ trm1 $ trm2 |
|
113 end |
|
114 |
|
115 |
|
116 |
|
117 fun mk_minus p = @{term "uminus::perm => perm"} $ p |
|
118 |
|
119 fun mk_plus p q = @{term "plus::perm => perm => perm"} $ p $ q |
|
120 |
|
121 fun perm_ty ty = @{typ "perm"} --> ty --> ty |
|
122 fun mk_perm_ty ty p trm = Const (@{const_name "permute"}, perm_ty ty) $ p $ trm |
|
123 fun mk_perm p trm = mk_perm_ty (fastype_of trm) p trm |
|
124 |
|
125 fun dest_perm (Const (@{const_name "permute"}, _) $ p $ t) = (p, t) |
|
126 | dest_perm t = raise TERM ("dest_perm", [t]); |
|
127 |
|
128 fun mk_sort_of t = @{term "sort_of"} $ t; |
|
129 |
|
130 fun atom_ty ty = ty --> @{typ "atom"}; |
|
131 fun mk_atom_ty ty t = Const (@{const_name "atom"}, atom_ty ty) $ t; |
|
132 fun mk_atom t = mk_atom_ty (fastype_of t) t; |
|
133 |
|
134 |
|
135 fun supp_ty ty = ty --> @{typ "atom set"}; |
|
136 fun supp_const ty = Const (@{const_name supp}, supp_ty ty) |
|
137 fun mk_supp_ty ty t = supp_const ty $ t |
|
138 fun mk_supp t = mk_supp_ty (fastype_of t) t |
|
139 |
|
140 fun supp_rel_ty ty = ([ty, ty] ---> @{typ bool}) --> ty --> @{typ "atom set"}; |
|
141 fun supp_rel_const ty = Const (@{const_name supp_rel}, supp_rel_ty ty) |
|
142 fun mk_supp_rel_ty ty r t = supp_rel_const ty $ r $ t |
|
143 fun mk_supp_rel r t = mk_supp_rel_ty (fastype_of t) r t |
|
144 |
|
145 fun supports_const ty = Const (@{const_name supports}, [@{typ "atom set"}, ty] ---> @{typ bool}); |
|
146 fun mk_supports_ty ty t1 t2 = supports_const ty $ t1 $ t2; |
|
147 fun mk_supports t1 t2 = mk_supports_ty (fastype_of t2) t1 t2; |
|
148 |
|
149 fun finite_const ty = Const (@{const_name finite}, ty --> @{typ bool}) |
|
150 fun mk_finite_ty ty t = finite_const ty $ t |
|
151 fun mk_finite t = mk_finite_ty (fastype_of t) t |
|
152 |
|
153 |
|
154 fun mk_equiv r = r RS @{thm eq_reflection}; |
|
155 fun safe_mk_equiv r = mk_equiv r handle Thm.THM _ => r; |
|
156 |
|
157 |
|
158 (* functions that construct differences, appends and unions |
|
159 but avoid producing empty atom sets or empty atom lists *) |
|
160 |
|
161 fun mk_diff (@{term "{}::atom set"}, _) = @{term "{}::atom set"} |
|
162 | mk_diff (t1, @{term "{}::atom set"}) = t1 |
|
163 | mk_diff (@{term "set ([]::atom list)"}, _) = @{term "set ([]::atom list)"} |
|
164 | mk_diff (t1, @{term "set ([]::atom list)"}) = t1 |
|
165 | mk_diff (t1, t2) = HOLogic.mk_binop @{const_name minus} (t1, t2) |
|
166 |
|
167 fun mk_append (t1, @{term "[]::atom list"}) = t1 |
|
168 | mk_append (@{term "[]::atom list"}, t2) = t2 |
|
169 | mk_append (t1, t2) = HOLogic.mk_binop @{const_name "append"} (t1, t2) |
|
170 |
|
171 fun mk_union (t1, @{term "{}::atom set"}) = t1 |
|
172 | mk_union (@{term "{}::atom set"}, t2) = t2 |
|
173 | mk_union (t1, @{term "set ([]::atom list)"}) = t1 |
|
174 | mk_union (@{term "set ([]::atom list)"}, t2) = t2 |
|
175 | mk_union (t1, t2) = HOLogic.mk_binop @{const_name "sup"} (t1, t2) |
|
176 |
|
177 fun fold_union trms = fold_rev (curry mk_union) trms @{term "{}::atom set"} |
|
178 fun fold_append trms = fold_rev (curry mk_append) trms @{term "[]::atom list"} |
|
179 |
|
180 fun mk_conj (t1, @{term "True"}) = t1 |
|
181 | mk_conj (@{term "True"}, t2) = t2 |
|
182 | mk_conj (t1, t2) = HOLogic.mk_conj (t1, t2) |
|
183 |
|
184 fun fold_conj trms = fold_rev (curry mk_conj) trms @{term "True"} |
|
185 |
|
186 |
|
187 (* produces fresh arguments for a term *) |
|
188 |
|
189 fun fresh_args ctxt f = |
|
190 f |> fastype_of |
|
191 |> binder_types |
|
192 |> map (pair "z") |
|
193 |> Variable.variant_frees ctxt [f] |
|
194 |> map Free |
|
195 |
|
196 |
|
197 |
|
198 (** datatypes **) |
|
199 |
|
200 (* constructor infos *) |
|
201 type cns_info = (term * typ * typ list * bool list) list |
|
202 |
|
203 (* returns the type of the nth datatype *) |
|
204 fun all_dtyps descr sorts = |
|
205 map (fn n => Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec n)) (0 upto (length descr - 1)) |
|
206 |
|
207 fun nth_dtyp descr sorts n = |
|
208 Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec n); |
|
209 |
|
210 (* returns info about constructors in a datatype *) |
|
211 fun all_dtyp_constrs_info descr = |
|
212 map (fn (_, (ty, vs, constrs)) => map (pair (ty, vs)) constrs) descr |
|
213 |
|
214 (* returns the constants of the constructors plus the |
|
215 corresponding type and types of arguments *) |
|
216 fun all_dtyp_constrs_types descr sorts = |
|
217 let |
|
218 fun aux ((ty_name, vs), (cname, args)) = |
|
219 let |
|
220 val vs_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) vs |
|
221 val ty = Type (ty_name, vs_tys) |
|
222 val arg_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) args |
|
223 val is_rec = map Datatype_Aux.is_rec_type args |
|
224 in |
|
225 (Const (cname, arg_tys ---> ty), ty, arg_tys, is_rec) |
|
226 end |
|
227 in |
|
228 map (map aux) (all_dtyp_constrs_info descr) |
|
229 end |
|
230 |
|
231 fun nth_dtyp_constrs_types descr sorts n = |
|
232 nth (all_dtyp_constrs_types descr sorts) n |
|
233 |
|
234 |
|
235 (* generates for every datatype a name str ^ dt_name |
|
236 plus and index for multiple occurences of a string *) |
|
237 fun prefix_dt_names descr sorts str = |
|
238 let |
|
239 fun get_nth_name (i, _) = |
|
240 Datatype_Aux.name_of_typ (nth_dtyp descr sorts i) |
|
241 in |
|
242 Datatype_Prop.indexify_names |
|
243 (map (prefix str o get_nth_name) descr) |
|
244 end |
|
245 |
|
246 |
|
247 |
|
248 (** function package tactics **) |
|
249 |
|
250 fun pat_completeness_simp simps lthy = |
|
251 let |
|
252 val simp_set = HOL_basic_ss addsimps (@{thms sum.inject sum.distinct} @ simps) |
|
253 in |
|
254 Pat_Completeness.pat_completeness_tac lthy 1 |
|
255 THEN ALLGOALS (asm_full_simp_tac simp_set) |
|
256 end |
|
257 |
|
258 |
|
259 fun prove_termination_tac size_simps ctxt = |
|
260 let |
|
261 val natT = @{typ nat} |
|
262 fun prod_size_const fT sT = |
|
263 let |
|
264 val fT_fun = fT --> natT |
|
265 val sT_fun = sT --> natT |
|
266 val prodT = Type (@{type_name prod}, [fT, sT]) |
|
267 in |
|
268 Const (@{const_name prod_size}, [fT_fun, sT_fun, prodT] ---> natT) |
|
269 end |
|
270 |
|
271 fun mk_size_measure T = |
|
272 case T of |
|
273 (Type (@{type_name Sum_Type.sum}, [fT, sT])) => |
|
274 SumTree.mk_sumcase fT sT natT (mk_size_measure fT) (mk_size_measure sT) |
|
275 | (Type (@{type_name Product_Type.prod}, [fT, sT])) => |
|
276 prod_size_const fT sT $ (mk_size_measure fT) $ (mk_size_measure sT) |
|
277 | _ => size_const T |
|
278 |
|
279 fun mk_measure_trm T = |
|
280 HOLogic.dest_setT T |
|
281 |> fst o HOLogic.dest_prodT |
|
282 |> mk_size_measure |
|
283 |> curry (op $) (Const (@{const_name "measure"}, dummyT)) |
|
284 |> Syntax.check_term ctxt |
|
285 |
|
286 val ss = HOL_ss addsimps @{thms in_measure wf_measure sum.cases add_Suc_right add.right_neutral |
|
287 zero_less_Suc prod.size(1) mult_Suc_right} @ size_simps |
|
288 val ss' = ss addsimprocs Nat_Numeral_Simprocs.cancel_numerals |
|
289 in |
|
290 Function_Relation.relation_tac ctxt mk_measure_trm |
|
291 THEN_ALL_NEW simp_tac ss' |
|
292 end |
|
293 |
|
294 fun prove_termination size_simps ctxt = |
|
295 Function.prove_termination NONE |
|
296 (HEADGOAL (prove_termination_tac size_simps ctxt)) ctxt |
|
297 |
|
298 (** transformations of premises (in inductive proofs) **) |
|
299 |
|
300 (* |
|
301 given the theorem F[t]; proves the theorem F[f t] |
|
302 |
|
303 - F needs to be monotone |
|
304 - f returns either SOME for a term it fires on |
|
305 and NONE elsewhere |
|
306 *) |
|
307 fun map_term f t = |
|
308 (case f t of |
|
309 NONE => map_term' f t |
|
310 | x => x) |
|
311 and map_term' f (t $ u) = |
|
312 (case (map_term f t, map_term f u) of |
|
313 (NONE, NONE) => NONE |
|
314 | (SOME t'', NONE) => SOME (t'' $ u) |
|
315 | (NONE, SOME u'') => SOME (t $ u'') |
|
316 | (SOME t'', SOME u'') => SOME (t'' $ u'')) |
|
317 | map_term' f (Abs (s, T, t)) = |
|
318 (case map_term f t of |
|
319 NONE => NONE |
|
320 | SOME t'' => SOME (Abs (s, T, t''))) |
|
321 | map_term' _ _ = NONE; |
|
322 |
|
323 fun map_thm_tac ctxt tac thm = |
|
324 let |
|
325 val monos = Inductive.get_monos ctxt |
|
326 val simps = HOL_basic_ss addsimps @{thms split_def} |
|
327 in |
|
328 EVERY [cut_facts_tac [thm] 1, etac rev_mp 1, |
|
329 REPEAT_DETERM (FIRSTGOAL (simp_tac simps THEN' resolve_tac monos)), |
|
330 REPEAT_DETERM (rtac impI 1 THEN (atac 1 ORELSE tac))] |
|
331 end |
|
332 |
|
333 fun map_thm ctxt f tac thm = |
|
334 let |
|
335 val opt_goal_trm = map_term f (prop_of thm) |
|
336 in |
|
337 case opt_goal_trm of |
|
338 NONE => thm |
|
339 | SOME goal => |
|
340 Goal.prove ctxt [] [] goal (fn _ => map_thm_tac ctxt tac thm) |
|
341 end |
|
342 |
|
343 (* |
|
344 inductive premises can be of the form |
|
345 R ... /\ P ...; split_conj_i picks out |
|
346 the part R or P part |
|
347 *) |
|
348 fun split_conj1 names (Const (@{const_name "conj"}, _) $ f1 $ _) = |
|
349 (case head_of f1 of |
|
350 Const (name, _) => if member (op =) names name then SOME f1 else NONE |
|
351 | _ => NONE) |
|
352 | split_conj1 _ _ = NONE; |
|
353 |
|
354 fun split_conj2 names (Const (@{const_name "conj"}, _) $ f1 $ f2) = |
|
355 (case head_of f1 of |
|
356 Const (name, _) => if member (op =) names name then SOME f2 else NONE |
|
357 | _ => NONE) |
|
358 | split_conj2 _ _ = NONE; |
|
359 |
|
360 fun transform_prem1 ctxt names thm = |
|
361 map_thm ctxt (split_conj1 names) (etac conjunct1 1) thm |
|
362 |
|
363 fun transform_prem2 ctxt names thm = |
|
364 map_thm ctxt (split_conj2 names) (etac conjunct2 1) thm |
|
365 |
|
366 |
|
367 (* transformes a theorem into one of the object logic *) |
|
368 val atomize = Conv.fconv_rule Object_Logic.atomize o forall_intr_vars |
|
369 |
|
370 end (* structure *) |
|
371 |
|
372 open Nominal_Library; |
|