1 (* Title: Nominal2_Base |
|
2 Authors: Brian Huffman, Christian Urban |
|
3 |
|
4 Basic definitions and lemma infrastructure for |
|
5 Nominal Isabelle. |
|
6 *) |
|
7 theory Nominal2_Base |
|
8 imports Main Infinite_Set |
|
9 "~~/src/HOL/Quotient_Examples/FSet" |
|
10 uses ("nominal_library.ML") |
|
11 ("nominal_atoms.ML") |
|
12 begin |
|
13 |
|
14 section {* Atoms and Sorts *} |
|
15 |
|
16 text {* A simple implementation for atom_sorts is strings. *} |
|
17 (* types atom_sort = string *) |
|
18 |
|
19 text {* To deal with Church-like binding we use trees of |
|
20 strings as sorts. *} |
|
21 |
|
22 datatype atom_sort = Sort "string" "atom_sort list" |
|
23 |
|
24 datatype atom = Atom atom_sort nat |
|
25 |
|
26 |
|
27 text {* Basic projection function. *} |
|
28 |
|
29 primrec |
|
30 sort_of :: "atom \<Rightarrow> atom_sort" |
|
31 where |
|
32 "sort_of (Atom s i) = s" |
|
33 |
|
34 primrec |
|
35 nat_of :: "atom \<Rightarrow> nat" |
|
36 where |
|
37 "nat_of (Atom s n) = n" |
|
38 |
|
39 |
|
40 text {* There are infinitely many atoms of each sort. *} |
|
41 lemma INFM_sort_of_eq: |
|
42 shows "INFM a. sort_of a = s" |
|
43 proof - |
|
44 have "INFM i. sort_of (Atom s i) = s" by simp |
|
45 moreover have "inj (Atom s)" by (simp add: inj_on_def) |
|
46 ultimately show "INFM a. sort_of a = s" by (rule INFM_inj) |
|
47 qed |
|
48 |
|
49 lemma infinite_sort_of_eq: |
|
50 shows "infinite {a. sort_of a = s}" |
|
51 using INFM_sort_of_eq unfolding INFM_iff_infinite . |
|
52 |
|
53 lemma atom_infinite [simp]: |
|
54 shows "infinite (UNIV :: atom set)" |
|
55 using subset_UNIV infinite_sort_of_eq |
|
56 by (rule infinite_super) |
|
57 |
|
58 lemma obtain_atom: |
|
59 fixes X :: "atom set" |
|
60 assumes X: "finite X" |
|
61 obtains a where "a \<notin> X" "sort_of a = s" |
|
62 proof - |
|
63 from X have "MOST a. a \<notin> X" |
|
64 unfolding MOST_iff_cofinite by simp |
|
65 with INFM_sort_of_eq |
|
66 have "INFM a. sort_of a = s \<and> a \<notin> X" |
|
67 by (rule INFM_conjI) |
|
68 then obtain a where "a \<notin> X" "sort_of a = s" |
|
69 by (auto elim: INFM_E) |
|
70 then show ?thesis .. |
|
71 qed |
|
72 |
|
73 lemma atom_components_eq_iff: |
|
74 fixes a b :: atom |
|
75 shows "a = b \<longleftrightarrow> sort_of a = sort_of b \<and> nat_of a = nat_of b" |
|
76 by (induct a, induct b, simp) |
|
77 |
|
78 section {* Sort-Respecting Permutations *} |
|
79 |
|
80 typedef perm = |
|
81 "{f. bij f \<and> finite {a. f a \<noteq> a} \<and> (\<forall>a. sort_of (f a) = sort_of a)}" |
|
82 proof |
|
83 show "id \<in> ?perm" by simp |
|
84 qed |
|
85 |
|
86 lemma permI: |
|
87 assumes "bij f" and "MOST x. f x = x" and "\<And>a. sort_of (f a) = sort_of a" |
|
88 shows "f \<in> perm" |
|
89 using assms unfolding perm_def MOST_iff_cofinite by simp |
|
90 |
|
91 lemma perm_is_bij: "f \<in> perm \<Longrightarrow> bij f" |
|
92 unfolding perm_def by simp |
|
93 |
|
94 lemma perm_is_finite: "f \<in> perm \<Longrightarrow> finite {a. f a \<noteq> a}" |
|
95 unfolding perm_def by simp |
|
96 |
|
97 lemma perm_is_sort_respecting: "f \<in> perm \<Longrightarrow> sort_of (f a) = sort_of a" |
|
98 unfolding perm_def by simp |
|
99 |
|
100 lemma perm_MOST: "f \<in> perm \<Longrightarrow> MOST x. f x = x" |
|
101 unfolding perm_def MOST_iff_cofinite by simp |
|
102 |
|
103 lemma perm_id: "id \<in> perm" |
|
104 unfolding perm_def by simp |
|
105 |
|
106 lemma perm_comp: |
|
107 assumes f: "f \<in> perm" and g: "g \<in> perm" |
|
108 shows "(f \<circ> g) \<in> perm" |
|
109 apply (rule permI) |
|
110 apply (rule bij_comp) |
|
111 apply (rule perm_is_bij [OF g]) |
|
112 apply (rule perm_is_bij [OF f]) |
|
113 apply (rule MOST_rev_mp [OF perm_MOST [OF g]]) |
|
114 apply (rule MOST_rev_mp [OF perm_MOST [OF f]]) |
|
115 apply (simp) |
|
116 apply (simp add: perm_is_sort_respecting [OF f]) |
|
117 apply (simp add: perm_is_sort_respecting [OF g]) |
|
118 done |
|
119 |
|
120 lemma perm_inv: |
|
121 assumes f: "f \<in> perm" |
|
122 shows "(inv f) \<in> perm" |
|
123 apply (rule permI) |
|
124 apply (rule bij_imp_bij_inv) |
|
125 apply (rule perm_is_bij [OF f]) |
|
126 apply (rule MOST_mono [OF perm_MOST [OF f]]) |
|
127 apply (erule subst, rule inv_f_f) |
|
128 apply (rule bij_is_inj [OF perm_is_bij [OF f]]) |
|
129 apply (rule perm_is_sort_respecting [OF f, THEN sym, THEN trans]) |
|
130 apply (simp add: surj_f_inv_f [OF bij_is_surj [OF perm_is_bij [OF f]]]) |
|
131 done |
|
132 |
|
133 lemma bij_Rep_perm: "bij (Rep_perm p)" |
|
134 using Rep_perm [of p] unfolding perm_def by simp |
|
135 |
|
136 lemma finite_Rep_perm: "finite {a. Rep_perm p a \<noteq> a}" |
|
137 using Rep_perm [of p] unfolding perm_def by simp |
|
138 |
|
139 lemma sort_of_Rep_perm: "sort_of (Rep_perm p a) = sort_of a" |
|
140 using Rep_perm [of p] unfolding perm_def by simp |
|
141 |
|
142 lemma Rep_perm_ext: |
|
143 "Rep_perm p1 = Rep_perm p2 \<Longrightarrow> p1 = p2" |
|
144 by (simp add: fun_eq_iff Rep_perm_inject [symmetric]) |
|
145 |
|
146 instance perm :: size .. |
|
147 |
|
148 subsection {* Permutations form a group *} |
|
149 |
|
150 instantiation perm :: group_add |
|
151 begin |
|
152 |
|
153 definition |
|
154 "0 = Abs_perm id" |
|
155 |
|
156 definition |
|
157 "- p = Abs_perm (inv (Rep_perm p))" |
|
158 |
|
159 definition |
|
160 "p + q = Abs_perm (Rep_perm p \<circ> Rep_perm q)" |
|
161 |
|
162 definition |
|
163 "(p1::perm) - p2 = p1 + - p2" |
|
164 |
|
165 lemma Rep_perm_0: "Rep_perm 0 = id" |
|
166 unfolding zero_perm_def |
|
167 by (simp add: Abs_perm_inverse perm_id) |
|
168 |
|
169 lemma Rep_perm_add: |
|
170 "Rep_perm (p1 + p2) = Rep_perm p1 \<circ> Rep_perm p2" |
|
171 unfolding plus_perm_def |
|
172 by (simp add: Abs_perm_inverse perm_comp Rep_perm) |
|
173 |
|
174 lemma Rep_perm_uminus: |
|
175 "Rep_perm (- p) = inv (Rep_perm p)" |
|
176 unfolding uminus_perm_def |
|
177 by (simp add: Abs_perm_inverse perm_inv Rep_perm) |
|
178 |
|
179 instance |
|
180 apply default |
|
181 unfolding Rep_perm_inject [symmetric] |
|
182 unfolding minus_perm_def |
|
183 unfolding Rep_perm_add |
|
184 unfolding Rep_perm_uminus |
|
185 unfolding Rep_perm_0 |
|
186 by (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]]) |
|
187 |
|
188 end |
|
189 |
|
190 |
|
191 section {* Implementation of swappings *} |
|
192 |
|
193 definition |
|
194 swap :: "atom \<Rightarrow> atom \<Rightarrow> perm" ("'(_ \<rightleftharpoons> _')") |
|
195 where |
|
196 "(a \<rightleftharpoons> b) = |
|
197 Abs_perm (if sort_of a = sort_of b |
|
198 then (\<lambda>c. if a = c then b else if b = c then a else c) |
|
199 else id)" |
|
200 |
|
201 lemma Rep_perm_swap: |
|
202 "Rep_perm (a \<rightleftharpoons> b) = |
|
203 (if sort_of a = sort_of b |
|
204 then (\<lambda>c. if a = c then b else if b = c then a else c) |
|
205 else id)" |
|
206 unfolding swap_def |
|
207 apply (rule Abs_perm_inverse) |
|
208 apply (rule permI) |
|
209 apply (auto simp add: bij_def inj_on_def surj_def)[1] |
|
210 apply (rule MOST_rev_mp [OF MOST_neq(1) [of a]]) |
|
211 apply (rule MOST_rev_mp [OF MOST_neq(1) [of b]]) |
|
212 apply (simp) |
|
213 apply (simp) |
|
214 done |
|
215 |
|
216 lemmas Rep_perm_simps = |
|
217 Rep_perm_0 |
|
218 Rep_perm_add |
|
219 Rep_perm_uminus |
|
220 Rep_perm_swap |
|
221 |
|
222 lemma swap_different_sorts [simp]: |
|
223 "sort_of a \<noteq> sort_of b \<Longrightarrow> (a \<rightleftharpoons> b) = 0" |
|
224 by (rule Rep_perm_ext) (simp add: Rep_perm_simps) |
|
225 |
|
226 lemma swap_cancel: |
|
227 "(a \<rightleftharpoons> b) + (a \<rightleftharpoons> b) = 0" |
|
228 by (rule Rep_perm_ext) |
|
229 (simp add: Rep_perm_simps fun_eq_iff) |
|
230 |
|
231 lemma swap_self [simp]: |
|
232 "(a \<rightleftharpoons> a) = 0" |
|
233 by (rule Rep_perm_ext, simp add: Rep_perm_simps fun_eq_iff) |
|
234 |
|
235 lemma minus_swap [simp]: |
|
236 "- (a \<rightleftharpoons> b) = (a \<rightleftharpoons> b)" |
|
237 by (rule minus_unique [OF swap_cancel]) |
|
238 |
|
239 lemma swap_commute: |
|
240 "(a \<rightleftharpoons> b) = (b \<rightleftharpoons> a)" |
|
241 by (rule Rep_perm_ext) |
|
242 (simp add: Rep_perm_swap fun_eq_iff) |
|
243 |
|
244 lemma swap_triple: |
|
245 assumes "a \<noteq> b" and "c \<noteq> b" |
|
246 assumes "sort_of a = sort_of b" "sort_of b = sort_of c" |
|
247 shows "(a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c) = (a \<rightleftharpoons> b)" |
|
248 using assms |
|
249 by (rule_tac Rep_perm_ext) |
|
250 (auto simp add: Rep_perm_simps fun_eq_iff) |
|
251 |
|
252 |
|
253 section {* Permutation Types *} |
|
254 |
|
255 text {* |
|
256 Infix syntax for @{text permute} has higher precedence than |
|
257 addition, but lower than unary minus. |
|
258 *} |
|
259 |
|
260 class pt = |
|
261 fixes permute :: "perm \<Rightarrow> 'a \<Rightarrow> 'a" ("_ \<bullet> _" [76, 75] 75) |
|
262 assumes permute_zero [simp]: "0 \<bullet> x = x" |
|
263 assumes permute_plus [simp]: "(p + q) \<bullet> x = p \<bullet> (q \<bullet> x)" |
|
264 begin |
|
265 |
|
266 lemma permute_diff [simp]: |
|
267 shows "(p - q) \<bullet> x = p \<bullet> - q \<bullet> x" |
|
268 unfolding diff_minus by simp |
|
269 |
|
270 lemma permute_minus_cancel [simp]: |
|
271 shows "p \<bullet> - p \<bullet> x = x" |
|
272 and "- p \<bullet> p \<bullet> x = x" |
|
273 unfolding permute_plus [symmetric] by simp_all |
|
274 |
|
275 lemma permute_swap_cancel [simp]: |
|
276 shows "(a \<rightleftharpoons> b) \<bullet> (a \<rightleftharpoons> b) \<bullet> x = x" |
|
277 unfolding permute_plus [symmetric] |
|
278 by (simp add: swap_cancel) |
|
279 |
|
280 lemma permute_swap_cancel2 [simp]: |
|
281 shows "(a \<rightleftharpoons> b) \<bullet> (b \<rightleftharpoons> a) \<bullet> x = x" |
|
282 unfolding permute_plus [symmetric] |
|
283 by (simp add: swap_commute) |
|
284 |
|
285 lemma inj_permute [simp]: |
|
286 shows "inj (permute p)" |
|
287 by (rule inj_on_inverseI) |
|
288 (rule permute_minus_cancel) |
|
289 |
|
290 lemma surj_permute [simp]: |
|
291 shows "surj (permute p)" |
|
292 by (rule surjI, rule permute_minus_cancel) |
|
293 |
|
294 lemma bij_permute [simp]: |
|
295 shows "bij (permute p)" |
|
296 by (rule bijI [OF inj_permute surj_permute]) |
|
297 |
|
298 lemma inv_permute: |
|
299 shows "inv (permute p) = permute (- p)" |
|
300 by (rule inv_equality) (simp_all) |
|
301 |
|
302 lemma permute_minus: |
|
303 shows "permute (- p) = inv (permute p)" |
|
304 by (simp add: inv_permute) |
|
305 |
|
306 lemma permute_eq_iff [simp]: |
|
307 shows "p \<bullet> x = p \<bullet> y \<longleftrightarrow> x = y" |
|
308 by (rule inj_permute [THEN inj_eq]) |
|
309 |
|
310 end |
|
311 |
|
312 subsection {* Permutations for atoms *} |
|
313 |
|
314 instantiation atom :: pt |
|
315 begin |
|
316 |
|
317 definition |
|
318 "p \<bullet> a = (Rep_perm p) a" |
|
319 |
|
320 instance |
|
321 apply(default) |
|
322 apply(simp_all add: permute_atom_def Rep_perm_simps) |
|
323 done |
|
324 |
|
325 end |
|
326 |
|
327 lemma sort_of_permute [simp]: |
|
328 shows "sort_of (p \<bullet> a) = sort_of a" |
|
329 unfolding permute_atom_def by (rule sort_of_Rep_perm) |
|
330 |
|
331 lemma swap_atom: |
|
332 shows "(a \<rightleftharpoons> b) \<bullet> c = |
|
333 (if sort_of a = sort_of b |
|
334 then (if c = a then b else if c = b then a else c) else c)" |
|
335 unfolding permute_atom_def |
|
336 by (simp add: Rep_perm_swap) |
|
337 |
|
338 lemma swap_atom_simps [simp]: |
|
339 "sort_of a = sort_of b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> a = b" |
|
340 "sort_of a = sort_of b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> b = a" |
|
341 "c \<noteq> a \<Longrightarrow> c \<noteq> b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> c = c" |
|
342 unfolding swap_atom by simp_all |
|
343 |
|
344 lemma expand_perm_eq: |
|
345 fixes p q :: "perm" |
|
346 shows "p = q \<longleftrightarrow> (\<forall>a::atom. p \<bullet> a = q \<bullet> a)" |
|
347 unfolding permute_atom_def |
|
348 by (metis Rep_perm_ext ext) |
|
349 |
|
350 |
|
351 subsection {* Permutations for permutations *} |
|
352 |
|
353 instantiation perm :: pt |
|
354 begin |
|
355 |
|
356 definition |
|
357 "p \<bullet> q = p + q - p" |
|
358 |
|
359 instance |
|
360 apply default |
|
361 apply (simp add: permute_perm_def) |
|
362 apply (simp add: permute_perm_def diff_minus minus_add add_assoc) |
|
363 done |
|
364 |
|
365 end |
|
366 |
|
367 lemma permute_self: |
|
368 shows "p \<bullet> p = p" |
|
369 unfolding permute_perm_def |
|
370 by (simp add: diff_minus add_assoc) |
|
371 |
|
372 lemma permute_eqvt: |
|
373 shows "p \<bullet> (q \<bullet> x) = (p \<bullet> q) \<bullet> (p \<bullet> x)" |
|
374 unfolding permute_perm_def by simp |
|
375 |
|
376 lemma zero_perm_eqvt: |
|
377 shows "p \<bullet> (0::perm) = 0" |
|
378 unfolding permute_perm_def by simp |
|
379 |
|
380 lemma add_perm_eqvt: |
|
381 fixes p p1 p2 :: perm |
|
382 shows "p \<bullet> (p1 + p2) = p \<bullet> p1 + p \<bullet> p2" |
|
383 unfolding permute_perm_def |
|
384 by (simp add: expand_perm_eq) |
|
385 |
|
386 lemma swap_eqvt: |
|
387 shows "p \<bullet> (a \<rightleftharpoons> b) = (p \<bullet> a \<rightleftharpoons> p \<bullet> b)" |
|
388 unfolding permute_perm_def |
|
389 by (auto simp add: swap_atom expand_perm_eq) |
|
390 |
|
391 lemma uminus_eqvt: |
|
392 fixes p q::"perm" |
|
393 shows "p \<bullet> (- q) = - (p \<bullet> q)" |
|
394 unfolding permute_perm_def |
|
395 by (simp add: diff_minus minus_add add_assoc) |
|
396 |
|
397 subsection {* Permutations for functions *} |
|
398 |
|
399 instantiation "fun" :: (pt, pt) pt |
|
400 begin |
|
401 |
|
402 definition |
|
403 "p \<bullet> f = (\<lambda>x. p \<bullet> (f (- p \<bullet> x)))" |
|
404 |
|
405 instance |
|
406 apply default |
|
407 apply (simp add: permute_fun_def) |
|
408 apply (simp add: permute_fun_def minus_add) |
|
409 done |
|
410 |
|
411 end |
|
412 |
|
413 lemma permute_fun_app_eq: |
|
414 shows "p \<bullet> (f x) = (p \<bullet> f) (p \<bullet> x)" |
|
415 unfolding permute_fun_def by simp |
|
416 |
|
417 |
|
418 subsection {* Permutations for booleans *} |
|
419 |
|
420 instantiation bool :: pt |
|
421 begin |
|
422 |
|
423 definition "p \<bullet> (b::bool) = b" |
|
424 |
|
425 instance |
|
426 apply(default) |
|
427 apply(simp_all add: permute_bool_def) |
|
428 done |
|
429 |
|
430 end |
|
431 |
|
432 lemma Not_eqvt: |
|
433 shows "p \<bullet> (\<not> A) = (\<not> (p \<bullet> A))" |
|
434 by (simp add: permute_bool_def) |
|
435 |
|
436 lemma conj_eqvt: |
|
437 shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))" |
|
438 by (simp add: permute_bool_def) |
|
439 |
|
440 lemma imp_eqvt: |
|
441 shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))" |
|
442 by (simp add: permute_bool_def) |
|
443 |
|
444 lemma ex_eqvt: |
|
445 shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)" |
|
446 unfolding permute_fun_def permute_bool_def |
|
447 by (auto, rule_tac x="p \<bullet> x" in exI, simp) |
|
448 |
|
449 lemma all_eqvt: |
|
450 shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)" |
|
451 unfolding permute_fun_def permute_bool_def |
|
452 by (auto, drule_tac x="p \<bullet> x" in spec, simp) |
|
453 |
|
454 lemma permute_boolE: |
|
455 fixes P::"bool" |
|
456 shows "p \<bullet> P \<Longrightarrow> P" |
|
457 by (simp add: permute_bool_def) |
|
458 |
|
459 lemma permute_boolI: |
|
460 fixes P::"bool" |
|
461 shows "P \<Longrightarrow> p \<bullet> P" |
|
462 by(simp add: permute_bool_def) |
|
463 |
|
464 subsection {* Permutations for sets *} |
|
465 |
|
466 lemma permute_set_eq: |
|
467 fixes x::"'a::pt" |
|
468 and p::"perm" |
|
469 shows "(p \<bullet> X) = {p \<bullet> x | x. x \<in> X}" |
|
470 unfolding permute_fun_def |
|
471 unfolding permute_bool_def |
|
472 apply(auto simp add: mem_def) |
|
473 apply(rule_tac x="- p \<bullet> x" in exI) |
|
474 apply(simp) |
|
475 done |
|
476 |
|
477 lemma permute_set_eq_image: |
|
478 shows "p \<bullet> X = permute p ` X" |
|
479 unfolding permute_set_eq by auto |
|
480 |
|
481 lemma permute_set_eq_vimage: |
|
482 shows "p \<bullet> X = permute (- p) -` X" |
|
483 unfolding permute_fun_def permute_bool_def |
|
484 unfolding vimage_def Collect_def mem_def .. |
|
485 |
|
486 lemma swap_set_not_in: |
|
487 assumes a: "a \<notin> S" "b \<notin> S" |
|
488 shows "(a \<rightleftharpoons> b) \<bullet> S = S" |
|
489 unfolding permute_set_eq |
|
490 using a by (auto simp add: swap_atom) |
|
491 |
|
492 lemma swap_set_in: |
|
493 assumes a: "a \<in> S" "b \<notin> S" "sort_of a = sort_of b" |
|
494 shows "(a \<rightleftharpoons> b) \<bullet> S \<noteq> S" |
|
495 unfolding permute_set_eq |
|
496 using a by (auto simp add: swap_atom) |
|
497 |
|
498 lemma mem_permute_iff: |
|
499 shows "(p \<bullet> x) \<in> (p \<bullet> X) \<longleftrightarrow> x \<in> X" |
|
500 unfolding mem_def permute_fun_def permute_bool_def |
|
501 by simp |
|
502 |
|
503 lemma mem_eqvt: |
|
504 shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)" |
|
505 unfolding mem_def |
|
506 by (simp add: permute_fun_app_eq) |
|
507 |
|
508 lemma empty_eqvt: |
|
509 shows "p \<bullet> {} = {}" |
|
510 unfolding empty_def Collect_def |
|
511 by (simp add: permute_fun_def permute_bool_def) |
|
512 |
|
513 lemma insert_eqvt: |
|
514 shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)" |
|
515 unfolding permute_set_eq_image image_insert .. |
|
516 |
|
517 |
|
518 subsection {* Permutations for units *} |
|
519 |
|
520 instantiation unit :: pt |
|
521 begin |
|
522 |
|
523 definition "p \<bullet> (u::unit) = u" |
|
524 |
|
525 instance |
|
526 by (default) (simp_all add: permute_unit_def) |
|
527 |
|
528 end |
|
529 |
|
530 |
|
531 subsection {* Permutations for products *} |
|
532 |
|
533 instantiation prod :: (pt, pt) pt |
|
534 begin |
|
535 |
|
536 primrec |
|
537 permute_prod |
|
538 where |
|
539 Pair_eqvt: "p \<bullet> (x, y) = (p \<bullet> x, p \<bullet> y)" |
|
540 |
|
541 instance |
|
542 by default auto |
|
543 |
|
544 end |
|
545 |
|
546 subsection {* Permutations for sums *} |
|
547 |
|
548 instantiation sum :: (pt, pt) pt |
|
549 begin |
|
550 |
|
551 primrec |
|
552 permute_sum |
|
553 where |
|
554 "p \<bullet> (Inl x) = Inl (p \<bullet> x)" |
|
555 | "p \<bullet> (Inr y) = Inr (p \<bullet> y)" |
|
556 |
|
557 instance |
|
558 by (default) (case_tac [!] x, simp_all) |
|
559 |
|
560 end |
|
561 |
|
562 subsection {* Permutations for lists *} |
|
563 |
|
564 instantiation list :: (pt) pt |
|
565 begin |
|
566 |
|
567 primrec |
|
568 permute_list |
|
569 where |
|
570 "p \<bullet> [] = []" |
|
571 | "p \<bullet> (x # xs) = p \<bullet> x # p \<bullet> xs" |
|
572 |
|
573 instance |
|
574 by (default) (induct_tac [!] x, simp_all) |
|
575 |
|
576 end |
|
577 |
|
578 lemma set_eqvt: |
|
579 shows "p \<bullet> (set xs) = set (p \<bullet> xs)" |
|
580 by (induct xs) (simp_all add: empty_eqvt insert_eqvt) |
|
581 |
|
582 subsection {* Permutations for options *} |
|
583 |
|
584 instantiation option :: (pt) pt |
|
585 begin |
|
586 |
|
587 primrec |
|
588 permute_option |
|
589 where |
|
590 "p \<bullet> None = None" |
|
591 | "p \<bullet> (Some x) = Some (p \<bullet> x)" |
|
592 |
|
593 instance |
|
594 by (default) (induct_tac [!] x, simp_all) |
|
595 |
|
596 end |
|
597 |
|
598 |
|
599 subsection {* Permutations for fsets *} |
|
600 |
|
601 lemma permute_fset_rsp[quot_respect]: |
|
602 shows "(op = ===> list_eq ===> list_eq) permute permute" |
|
603 unfolding fun_rel_def |
|
604 by (simp add: set_eqvt[symmetric]) |
|
605 |
|
606 instantiation fset :: (pt) pt |
|
607 begin |
|
608 |
|
609 quotient_definition |
|
610 "permute_fset :: perm \<Rightarrow> 'a fset \<Rightarrow> 'a fset" |
|
611 is |
|
612 "permute :: perm \<Rightarrow> 'a list \<Rightarrow> 'a list" |
|
613 |
|
614 instance |
|
615 proof |
|
616 fix x :: "'a fset" and p q :: "perm" |
|
617 show "0 \<bullet> x = x" by (descending) (simp) |
|
618 show "(p + q) \<bullet> x = p \<bullet> q \<bullet> x" by (descending) (simp) |
|
619 qed |
|
620 |
|
621 end |
|
622 |
|
623 lemma permute_fset [simp]: |
|
624 fixes S::"('a::pt) fset" |
|
625 shows "(p \<bullet> {||}) = ({||} ::('a::pt) fset)" |
|
626 and "(p \<bullet> insert_fset x S) = insert_fset (p \<bullet> x) (p \<bullet> S)" |
|
627 by (lifting permute_list.simps) |
|
628 |
|
629 |
|
630 |
|
631 subsection {* Permutations for @{typ char}, @{typ nat}, and @{typ int} *} |
|
632 |
|
633 instantiation char :: pt |
|
634 begin |
|
635 |
|
636 definition "p \<bullet> (c::char) = c" |
|
637 |
|
638 instance |
|
639 by (default) (simp_all add: permute_char_def) |
|
640 |
|
641 end |
|
642 |
|
643 instantiation nat :: pt |
|
644 begin |
|
645 |
|
646 definition "p \<bullet> (n::nat) = n" |
|
647 |
|
648 instance |
|
649 by (default) (simp_all add: permute_nat_def) |
|
650 |
|
651 end |
|
652 |
|
653 instantiation int :: pt |
|
654 begin |
|
655 |
|
656 definition "p \<bullet> (i::int) = i" |
|
657 |
|
658 instance |
|
659 by (default) (simp_all add: permute_int_def) |
|
660 |
|
661 end |
|
662 |
|
663 |
|
664 section {* Pure types *} |
|
665 |
|
666 text {* Pure types will have always empty support. *} |
|
667 |
|
668 class pure = pt + |
|
669 assumes permute_pure: "p \<bullet> x = x" |
|
670 |
|
671 text {* Types @{typ unit} and @{typ bool} are pure. *} |
|
672 |
|
673 instance unit :: pure |
|
674 proof qed (rule permute_unit_def) |
|
675 |
|
676 instance bool :: pure |
|
677 proof qed (rule permute_bool_def) |
|
678 |
|
679 text {* Other type constructors preserve purity. *} |
|
680 |
|
681 instance "fun" :: (pure, pure) pure |
|
682 by default (simp add: permute_fun_def permute_pure) |
|
683 |
|
684 instance prod :: (pure, pure) pure |
|
685 by default (induct_tac x, simp add: permute_pure) |
|
686 |
|
687 instance sum :: (pure, pure) pure |
|
688 by default (induct_tac x, simp_all add: permute_pure) |
|
689 |
|
690 instance list :: (pure) pure |
|
691 by default (induct_tac x, simp_all add: permute_pure) |
|
692 |
|
693 instance option :: (pure) pure |
|
694 by default (induct_tac x, simp_all add: permute_pure) |
|
695 |
|
696 |
|
697 subsection {* Types @{typ char}, @{typ nat}, and @{typ int} *} |
|
698 |
|
699 instance char :: pure |
|
700 proof qed (rule permute_char_def) |
|
701 |
|
702 instance nat :: pure |
|
703 proof qed (rule permute_nat_def) |
|
704 |
|
705 instance int :: pure |
|
706 proof qed (rule permute_int_def) |
|
707 |
|
708 |
|
709 subsection {* Supp, Freshness and Supports *} |
|
710 |
|
711 context pt |
|
712 begin |
|
713 |
|
714 definition |
|
715 supp :: "'a \<Rightarrow> atom set" |
|
716 where |
|
717 "supp x = {a. infinite {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}}" |
|
718 |
|
719 end |
|
720 |
|
721 definition |
|
722 fresh :: "atom \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp> _" [55, 55] 55) |
|
723 where |
|
724 "a \<sharp> x \<equiv> a \<notin> supp x" |
|
725 |
|
726 lemma supp_conv_fresh: |
|
727 shows "supp x = {a. \<not> a \<sharp> x}" |
|
728 unfolding fresh_def by simp |
|
729 |
|
730 lemma swap_rel_trans: |
|
731 assumes "sort_of a = sort_of b" |
|
732 assumes "sort_of b = sort_of c" |
|
733 assumes "(a \<rightleftharpoons> c) \<bullet> x = x" |
|
734 assumes "(b \<rightleftharpoons> c) \<bullet> x = x" |
|
735 shows "(a \<rightleftharpoons> b) \<bullet> x = x" |
|
736 proof (cases) |
|
737 assume "a = b \<or> c = b" |
|
738 with assms show "(a \<rightleftharpoons> b) \<bullet> x = x" by auto |
|
739 next |
|
740 assume *: "\<not> (a = b \<or> c = b)" |
|
741 have "((a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c)) \<bullet> x = x" |
|
742 using assms by simp |
|
743 also have "(a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c) = (a \<rightleftharpoons> b)" |
|
744 using assms * by (simp add: swap_triple) |
|
745 finally show "(a \<rightleftharpoons> b) \<bullet> x = x" . |
|
746 qed |
|
747 |
|
748 lemma swap_fresh_fresh: |
|
749 assumes a: "a \<sharp> x" |
|
750 and b: "b \<sharp> x" |
|
751 shows "(a \<rightleftharpoons> b) \<bullet> x = x" |
|
752 proof (cases) |
|
753 assume asm: "sort_of a = sort_of b" |
|
754 have "finite {c. (a \<rightleftharpoons> c) \<bullet> x \<noteq> x}" "finite {c. (b \<rightleftharpoons> c) \<bullet> x \<noteq> x}" |
|
755 using a b unfolding fresh_def supp_def by simp_all |
|
756 then have "finite ({c. (a \<rightleftharpoons> c) \<bullet> x \<noteq> x} \<union> {c. (b \<rightleftharpoons> c) \<bullet> x \<noteq> x})" by simp |
|
757 then obtain c |
|
758 where "(a \<rightleftharpoons> c) \<bullet> x = x" "(b \<rightleftharpoons> c) \<bullet> x = x" "sort_of c = sort_of b" |
|
759 by (rule obtain_atom) (auto) |
|
760 then show "(a \<rightleftharpoons> b) \<bullet> x = x" using asm by (rule_tac swap_rel_trans) (simp_all) |
|
761 next |
|
762 assume "sort_of a \<noteq> sort_of b" |
|
763 then show "(a \<rightleftharpoons> b) \<bullet> x = x" by simp |
|
764 qed |
|
765 |
|
766 |
|
767 subsection {* supp and fresh are equivariant *} |
|
768 |
|
769 lemma finite_Collect_bij: |
|
770 assumes a: "bij f" |
|
771 shows "finite {x. P (f x)} = finite {x. P x}" |
|
772 by (metis a finite_vimage_iff vimage_Collect_eq) |
|
773 |
|
774 lemma fresh_permute_iff: |
|
775 shows "(p \<bullet> a) \<sharp> (p \<bullet> x) \<longleftrightarrow> a \<sharp> x" |
|
776 proof - |
|
777 have "(p \<bullet> a) \<sharp> (p \<bullet> x) \<longleftrightarrow> finite {b. (p \<bullet> a \<rightleftharpoons> b) \<bullet> p \<bullet> x \<noteq> p \<bullet> x}" |
|
778 unfolding fresh_def supp_def by simp |
|
779 also have "\<dots> \<longleftrightarrow> finite {b. (p \<bullet> a \<rightleftharpoons> p \<bullet> b) \<bullet> p \<bullet> x \<noteq> p \<bullet> x}" |
|
780 using bij_permute by (rule finite_Collect_bij[symmetric]) |
|
781 also have "\<dots> \<longleftrightarrow> finite {b. p \<bullet> (a \<rightleftharpoons> b) \<bullet> x \<noteq> p \<bullet> x}" |
|
782 by (simp only: permute_eqvt [of p] swap_eqvt) |
|
783 also have "\<dots> \<longleftrightarrow> finite {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}" |
|
784 by (simp only: permute_eq_iff) |
|
785 also have "\<dots> \<longleftrightarrow> a \<sharp> x" |
|
786 unfolding fresh_def supp_def by simp |
|
787 finally show "(p \<bullet> a) \<sharp> (p \<bullet> x) \<longleftrightarrow> a \<sharp> x" . |
|
788 qed |
|
789 |
|
790 lemma fresh_eqvt: |
|
791 shows "p \<bullet> (a \<sharp> x) = (p \<bullet> a) \<sharp> (p \<bullet> x)" |
|
792 unfolding permute_bool_def |
|
793 by (simp add: fresh_permute_iff) |
|
794 |
|
795 lemma supp_eqvt: |
|
796 fixes p :: "perm" |
|
797 and x :: "'a::pt" |
|
798 shows "p \<bullet> (supp x) = supp (p \<bullet> x)" |
|
799 unfolding supp_conv_fresh |
|
800 unfolding Collect_def |
|
801 unfolding permute_fun_def |
|
802 by (simp add: Not_eqvt fresh_eqvt) |
|
803 |
|
804 subsection {* supports *} |
|
805 |
|
806 definition |
|
807 supports :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" (infixl "supports" 80) |
|
808 where |
|
809 "S supports x \<equiv> \<forall>a b. (a \<notin> S \<and> b \<notin> S \<longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x)" |
|
810 |
|
811 lemma supp_is_subset: |
|
812 fixes S :: "atom set" |
|
813 and x :: "'a::pt" |
|
814 assumes a1: "S supports x" |
|
815 and a2: "finite S" |
|
816 shows "(supp x) \<subseteq> S" |
|
817 proof (rule ccontr) |
|
818 assume "\<not> (supp x \<subseteq> S)" |
|
819 then obtain a where b1: "a \<in> supp x" and b2: "a \<notin> S" by auto |
|
820 from a1 b2 have "\<forall>b. b \<notin> S \<longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x" unfolding supports_def by auto |
|
821 then have "{b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x} \<subseteq> S" by auto |
|
822 with a2 have "finite {b. (a \<rightleftharpoons> b)\<bullet>x \<noteq> x}" by (simp add: finite_subset) |
|
823 then have "a \<notin> (supp x)" unfolding supp_def by simp |
|
824 with b1 show False by simp |
|
825 qed |
|
826 |
|
827 lemma supports_finite: |
|
828 fixes S :: "atom set" |
|
829 and x :: "'a::pt" |
|
830 assumes a1: "S supports x" |
|
831 and a2: "finite S" |
|
832 shows "finite (supp x)" |
|
833 proof - |
|
834 have "(supp x) \<subseteq> S" using a1 a2 by (rule supp_is_subset) |
|
835 then show "finite (supp x)" using a2 by (simp add: finite_subset) |
|
836 qed |
|
837 |
|
838 lemma supp_supports: |
|
839 fixes x :: "'a::pt" |
|
840 shows "(supp x) supports x" |
|
841 unfolding supports_def |
|
842 proof (intro strip) |
|
843 fix a b |
|
844 assume "a \<notin> (supp x) \<and> b \<notin> (supp x)" |
|
845 then have "a \<sharp> x" and "b \<sharp> x" by (simp_all add: fresh_def) |
|
846 then show "(a \<rightleftharpoons> b) \<bullet> x = x" by (simp add: swap_fresh_fresh) |
|
847 qed |
|
848 |
|
849 lemma supp_is_least_supports: |
|
850 fixes S :: "atom set" |
|
851 and x :: "'a::pt" |
|
852 assumes a1: "S supports x" |
|
853 and a2: "finite S" |
|
854 and a3: "\<And>S'. finite S' \<Longrightarrow> (S' supports x) \<Longrightarrow> S \<subseteq> S'" |
|
855 shows "(supp x) = S" |
|
856 proof (rule equalityI) |
|
857 show "(supp x) \<subseteq> S" using a1 a2 by (rule supp_is_subset) |
|
858 with a2 have fin: "finite (supp x)" by (rule rev_finite_subset) |
|
859 have "(supp x) supports x" by (rule supp_supports) |
|
860 with fin a3 show "S \<subseteq> supp x" by blast |
|
861 qed |
|
862 |
|
863 lemma subsetCI: |
|
864 shows "(\<And>x. x \<in> A \<Longrightarrow> x \<notin> B \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> B" |
|
865 by auto |
|
866 |
|
867 lemma finite_supp_unique: |
|
868 assumes a1: "S supports x" |
|
869 assumes a2: "finite S" |
|
870 assumes a3: "\<And>a b. \<lbrakk>a \<in> S; b \<notin> S; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> x \<noteq> x" |
|
871 shows "(supp x) = S" |
|
872 using a1 a2 |
|
873 proof (rule supp_is_least_supports) |
|
874 fix S' |
|
875 assume "finite S'" and "S' supports x" |
|
876 show "S \<subseteq> S'" |
|
877 proof (rule subsetCI) |
|
878 fix a |
|
879 assume "a \<in> S" and "a \<notin> S'" |
|
880 have "finite (S \<union> S')" |
|
881 using `finite S` `finite S'` by simp |
|
882 then obtain b where "b \<notin> S \<union> S'" and "sort_of b = sort_of a" |
|
883 by (rule obtain_atom) |
|
884 then have "b \<notin> S" and "b \<notin> S'" and "sort_of a = sort_of b" |
|
885 by simp_all |
|
886 then have "(a \<rightleftharpoons> b) \<bullet> x = x" |
|
887 using `a \<notin> S'` `S' supports x` by (simp add: supports_def) |
|
888 moreover have "(a \<rightleftharpoons> b) \<bullet> x \<noteq> x" |
|
889 using `a \<in> S` `b \<notin> S` `sort_of a = sort_of b` |
|
890 by (rule a3) |
|
891 ultimately show "False" by simp |
|
892 qed |
|
893 qed |
|
894 |
|
895 section {* Support w.r.t. relations *} |
|
896 |
|
897 text {* |
|
898 This definition is used for unquotient types, where |
|
899 alpha-equivalence does not coincide with equality. |
|
900 *} |
|
901 |
|
902 definition |
|
903 "supp_rel R x = {a. infinite {b. \<not>(R ((a \<rightleftharpoons> b) \<bullet> x) x)}}" |
|
904 |
|
905 |
|
906 |
|
907 section {* Finitely-supported types *} |
|
908 |
|
909 class fs = pt + |
|
910 assumes finite_supp: "finite (supp x)" |
|
911 |
|
912 lemma pure_supp: |
|
913 shows "supp (x::'a::pure) = {}" |
|
914 unfolding supp_def by (simp add: permute_pure) |
|
915 |
|
916 lemma pure_fresh: |
|
917 fixes x::"'a::pure" |
|
918 shows "a \<sharp> x" |
|
919 unfolding fresh_def by (simp add: pure_supp) |
|
920 |
|
921 instance pure < fs |
|
922 by default (simp add: pure_supp) |
|
923 |
|
924 |
|
925 subsection {* Type @{typ atom} is finitely-supported. *} |
|
926 |
|
927 lemma supp_atom: |
|
928 shows "supp a = {a}" |
|
929 apply (rule finite_supp_unique) |
|
930 apply (clarsimp simp add: supports_def) |
|
931 apply simp |
|
932 apply simp |
|
933 done |
|
934 |
|
935 lemma fresh_atom: |
|
936 shows "a \<sharp> b \<longleftrightarrow> a \<noteq> b" |
|
937 unfolding fresh_def supp_atom by simp |
|
938 |
|
939 instance atom :: fs |
|
940 by default (simp add: supp_atom) |
|
941 |
|
942 section {* Support for finite sets of atoms *} |
|
943 |
|
944 |
|
945 lemma supp_finite_atom_set: |
|
946 fixes S::"atom set" |
|
947 assumes "finite S" |
|
948 shows "supp S = S" |
|
949 apply(rule finite_supp_unique) |
|
950 apply(simp add: supports_def) |
|
951 apply(simp add: swap_set_not_in) |
|
952 apply(rule assms) |
|
953 apply(simp add: swap_set_in) |
|
954 done |
|
955 |
|
956 section {* Type @{typ perm} is finitely-supported. *} |
|
957 |
|
958 lemma perm_swap_eq: |
|
959 shows "(a \<rightleftharpoons> b) \<bullet> p = p \<longleftrightarrow> (p \<bullet> (a \<rightleftharpoons> b)) = (a \<rightleftharpoons> b)" |
|
960 unfolding permute_perm_def |
|
961 by (metis add_diff_cancel minus_perm_def) |
|
962 |
|
963 lemma supports_perm: |
|
964 shows "{a. p \<bullet> a \<noteq> a} supports p" |
|
965 unfolding supports_def |
|
966 unfolding perm_swap_eq |
|
967 by (simp add: swap_eqvt) |
|
968 |
|
969 lemma finite_perm_lemma: |
|
970 shows "finite {a::atom. p \<bullet> a \<noteq> a}" |
|
971 using finite_Rep_perm [of p] |
|
972 unfolding permute_atom_def . |
|
973 |
|
974 lemma supp_perm: |
|
975 shows "supp p = {a. p \<bullet> a \<noteq> a}" |
|
976 apply (rule finite_supp_unique) |
|
977 apply (rule supports_perm) |
|
978 apply (rule finite_perm_lemma) |
|
979 apply (simp add: perm_swap_eq swap_eqvt) |
|
980 apply (auto simp add: expand_perm_eq swap_atom) |
|
981 done |
|
982 |
|
983 lemma fresh_perm: |
|
984 shows "a \<sharp> p \<longleftrightarrow> p \<bullet> a = a" |
|
985 unfolding fresh_def |
|
986 by (simp add: supp_perm) |
|
987 |
|
988 lemma supp_swap: |
|
989 shows "supp (a \<rightleftharpoons> b) = (if a = b \<or> sort_of a \<noteq> sort_of b then {} else {a, b})" |
|
990 by (auto simp add: supp_perm swap_atom) |
|
991 |
|
992 lemma fresh_zero_perm: |
|
993 shows "a \<sharp> (0::perm)" |
|
994 unfolding fresh_perm by simp |
|
995 |
|
996 lemma supp_zero_perm: |
|
997 shows "supp (0::perm) = {}" |
|
998 unfolding supp_perm by simp |
|
999 |
|
1000 lemma fresh_plus_perm: |
|
1001 fixes p q::perm |
|
1002 assumes "a \<sharp> p" "a \<sharp> q" |
|
1003 shows "a \<sharp> (p + q)" |
|
1004 using assms |
|
1005 unfolding fresh_def |
|
1006 by (auto simp add: supp_perm) |
|
1007 |
|
1008 lemma supp_plus_perm: |
|
1009 fixes p q::perm |
|
1010 shows "supp (p + q) \<subseteq> supp p \<union> supp q" |
|
1011 by (auto simp add: supp_perm) |
|
1012 |
|
1013 lemma fresh_minus_perm: |
|
1014 fixes p::perm |
|
1015 shows "a \<sharp> (- p) \<longleftrightarrow> a \<sharp> p" |
|
1016 unfolding fresh_def |
|
1017 unfolding supp_perm |
|
1018 apply(simp) |
|
1019 apply(metis permute_minus_cancel) |
|
1020 done |
|
1021 |
|
1022 lemma supp_minus_perm: |
|
1023 fixes p::perm |
|
1024 shows "supp (- p) = supp p" |
|
1025 unfolding supp_conv_fresh |
|
1026 by (simp add: fresh_minus_perm) |
|
1027 |
|
1028 instance perm :: fs |
|
1029 by default (simp add: supp_perm finite_perm_lemma) |
|
1030 |
|
1031 lemma plus_perm_eq: |
|
1032 fixes p q::"perm" |
|
1033 assumes asm: "supp p \<inter> supp q = {}" |
|
1034 shows "p + q = q + p" |
|
1035 unfolding expand_perm_eq |
|
1036 proof |
|
1037 fix a::"atom" |
|
1038 show "(p + q) \<bullet> a = (q + p) \<bullet> a" |
|
1039 proof - |
|
1040 { assume "a \<notin> supp p" "a \<notin> supp q" |
|
1041 then have "(p + q) \<bullet> a = (q + p) \<bullet> a" |
|
1042 by (simp add: supp_perm) |
|
1043 } |
|
1044 moreover |
|
1045 { assume a: "a \<in> supp p" "a \<notin> supp q" |
|
1046 then have "p \<bullet> a \<in> supp p" by (simp add: supp_perm) |
|
1047 then have "p \<bullet> a \<notin> supp q" using asm by auto |
|
1048 with a have "(p + q) \<bullet> a = (q + p) \<bullet> a" |
|
1049 by (simp add: supp_perm) |
|
1050 } |
|
1051 moreover |
|
1052 { assume a: "a \<notin> supp p" "a \<in> supp q" |
|
1053 then have "q \<bullet> a \<in> supp q" by (simp add: supp_perm) |
|
1054 then have "q \<bullet> a \<notin> supp p" using asm by auto |
|
1055 with a have "(p + q) \<bullet> a = (q + p) \<bullet> a" |
|
1056 by (simp add: supp_perm) |
|
1057 } |
|
1058 ultimately show "(p + q) \<bullet> a = (q + p) \<bullet> a" |
|
1059 using asm by blast |
|
1060 qed |
|
1061 qed |
|
1062 |
|
1063 section {* Finite Support instances for other types *} |
|
1064 |
|
1065 |
|
1066 subsection {* Type @{typ "'a \<times> 'b"} is finitely-supported. *} |
|
1067 |
|
1068 lemma supp_Pair: |
|
1069 shows "supp (x, y) = supp x \<union> supp y" |
|
1070 by (simp add: supp_def Collect_imp_eq Collect_neg_eq) |
|
1071 |
|
1072 lemma fresh_Pair: |
|
1073 shows "a \<sharp> (x, y) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> y" |
|
1074 by (simp add: fresh_def supp_Pair) |
|
1075 |
|
1076 lemma supp_Unit: |
|
1077 shows "supp () = {}" |
|
1078 by (simp add: supp_def) |
|
1079 |
|
1080 lemma fresh_Unit: |
|
1081 shows "a \<sharp> ()" |
|
1082 by (simp add: fresh_def supp_Unit) |
|
1083 |
|
1084 instance prod :: (fs, fs) fs |
|
1085 apply default |
|
1086 apply (induct_tac x) |
|
1087 apply (simp add: supp_Pair finite_supp) |
|
1088 done |
|
1089 |
|
1090 |
|
1091 subsection {* Type @{typ "'a + 'b"} is finitely supported *} |
|
1092 |
|
1093 lemma supp_Inl: |
|
1094 shows "supp (Inl x) = supp x" |
|
1095 by (simp add: supp_def) |
|
1096 |
|
1097 lemma supp_Inr: |
|
1098 shows "supp (Inr x) = supp x" |
|
1099 by (simp add: supp_def) |
|
1100 |
|
1101 lemma fresh_Inl: |
|
1102 shows "a \<sharp> Inl x \<longleftrightarrow> a \<sharp> x" |
|
1103 by (simp add: fresh_def supp_Inl) |
|
1104 |
|
1105 lemma fresh_Inr: |
|
1106 shows "a \<sharp> Inr y \<longleftrightarrow> a \<sharp> y" |
|
1107 by (simp add: fresh_def supp_Inr) |
|
1108 |
|
1109 instance sum :: (fs, fs) fs |
|
1110 apply default |
|
1111 apply (induct_tac x) |
|
1112 apply (simp_all add: supp_Inl supp_Inr finite_supp) |
|
1113 done |
|
1114 |
|
1115 |
|
1116 subsection {* Type @{typ "'a option"} is finitely supported *} |
|
1117 |
|
1118 lemma supp_None: |
|
1119 shows "supp None = {}" |
|
1120 by (simp add: supp_def) |
|
1121 |
|
1122 lemma supp_Some: |
|
1123 shows "supp (Some x) = supp x" |
|
1124 by (simp add: supp_def) |
|
1125 |
|
1126 lemma fresh_None: |
|
1127 shows "a \<sharp> None" |
|
1128 by (simp add: fresh_def supp_None) |
|
1129 |
|
1130 lemma fresh_Some: |
|
1131 shows "a \<sharp> Some x \<longleftrightarrow> a \<sharp> x" |
|
1132 by (simp add: fresh_def supp_Some) |
|
1133 |
|
1134 instance option :: (fs) fs |
|
1135 apply default |
|
1136 apply (induct_tac x) |
|
1137 apply (simp_all add: supp_None supp_Some finite_supp) |
|
1138 done |
|
1139 |
|
1140 |
|
1141 subsubsection {* Type @{typ "'a list"} is finitely supported *} |
|
1142 |
|
1143 lemma supp_Nil: |
|
1144 shows "supp [] = {}" |
|
1145 by (simp add: supp_def) |
|
1146 |
|
1147 lemma supp_Cons: |
|
1148 shows "supp (x # xs) = supp x \<union> supp xs" |
|
1149 by (simp add: supp_def Collect_imp_eq Collect_neg_eq) |
|
1150 |
|
1151 lemma fresh_Nil: |
|
1152 shows "a \<sharp> []" |
|
1153 by (simp add: fresh_def supp_Nil) |
|
1154 |
|
1155 lemma fresh_Cons: |
|
1156 shows "a \<sharp> (x # xs) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> xs" |
|
1157 by (simp add: fresh_def supp_Cons) |
|
1158 |
|
1159 instance list :: (fs) fs |
|
1160 apply default |
|
1161 apply (induct_tac x) |
|
1162 apply (simp_all add: supp_Nil supp_Cons finite_supp) |
|
1163 done |
|
1164 |
|
1165 |
|
1166 section {* Support and Freshness for Applications *} |
|
1167 |
|
1168 lemma fresh_conv_MOST: |
|
1169 shows "a \<sharp> x \<longleftrightarrow> (MOST b. (a \<rightleftharpoons> b) \<bullet> x = x)" |
|
1170 unfolding fresh_def supp_def |
|
1171 unfolding MOST_iff_cofinite by simp |
|
1172 |
|
1173 lemma supp_subset_fresh: |
|
1174 assumes a: "\<And>a. a \<sharp> x \<Longrightarrow> a \<sharp> y" |
|
1175 shows "supp y \<subseteq> supp x" |
|
1176 using a |
|
1177 unfolding fresh_def |
|
1178 by blast |
|
1179 |
|
1180 lemma fresh_fun_app: |
|
1181 assumes "a \<sharp> f" and "a \<sharp> x" |
|
1182 shows "a \<sharp> f x" |
|
1183 using assms |
|
1184 unfolding fresh_conv_MOST |
|
1185 unfolding permute_fun_app_eq |
|
1186 by (elim MOST_rev_mp, simp) |
|
1187 |
|
1188 lemma supp_fun_app: |
|
1189 shows "supp (f x) \<subseteq> (supp f) \<union> (supp x)" |
|
1190 using fresh_fun_app |
|
1191 unfolding fresh_def |
|
1192 by auto |
|
1193 |
|
1194 text {* Support of Equivariant Functions *} |
|
1195 |
|
1196 lemma supp_fun_eqvt: |
|
1197 assumes a: "\<And>p. p \<bullet> f = f" |
|
1198 shows "supp f = {}" |
|
1199 unfolding supp_def |
|
1200 using a by simp |
|
1201 |
|
1202 lemma fresh_fun_eqvt_app: |
|
1203 assumes a: "\<And>p. p \<bullet> f = f" |
|
1204 shows "a \<sharp> x \<Longrightarrow> a \<sharp> f x" |
|
1205 proof - |
|
1206 from a have "supp f = {}" by (simp add: supp_fun_eqvt) |
|
1207 then show "a \<sharp> x \<Longrightarrow> a \<sharp> f x" |
|
1208 unfolding fresh_def |
|
1209 using supp_fun_app by auto |
|
1210 qed |
|
1211 |
|
1212 |
|
1213 section {* Support of Finite Sets of Finitely Supported Elements *} |
|
1214 |
|
1215 lemma Union_fresh: |
|
1216 shows "a \<sharp> S \<Longrightarrow> a \<sharp> (\<Union>x \<in> S. supp x)" |
|
1217 unfolding Union_image_eq[symmetric] |
|
1218 apply(rule_tac f="\<lambda>S. \<Union> supp ` S" in fresh_fun_eqvt_app) |
|
1219 apply(simp add: permute_fun_def UNION_def Collect_def Bex_def ex_eqvt mem_def conj_eqvt) |
|
1220 apply(subst permute_fun_app_eq) |
|
1221 back |
|
1222 apply(simp add: supp_eqvt) |
|
1223 apply(assumption) |
|
1224 done |
|
1225 |
|
1226 lemma Union_supports_set: |
|
1227 shows "(\<Union>x \<in> S. supp x) supports S" |
|
1228 proof - |
|
1229 { fix a b |
|
1230 have "\<forall>x \<in> S. (a \<rightleftharpoons> b) \<bullet> x = x \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> S = S" |
|
1231 unfolding permute_set_eq by force |
|
1232 } |
|
1233 then show "(\<Union>x \<in> S. supp x) supports S" |
|
1234 unfolding supports_def |
|
1235 by (simp add: fresh_def[symmetric] swap_fresh_fresh) |
|
1236 qed |
|
1237 |
|
1238 lemma Union_of_finite_supp_sets: |
|
1239 fixes S::"('a::fs set)" |
|
1240 assumes fin: "finite S" |
|
1241 shows "finite (\<Union>x\<in>S. supp x)" |
|
1242 using fin by (induct) (auto simp add: finite_supp) |
|
1243 |
|
1244 lemma Union_included_in_supp: |
|
1245 fixes S::"('a::fs set)" |
|
1246 assumes fin: "finite S" |
|
1247 shows "(\<Union>x\<in>S. supp x) \<subseteq> supp S" |
|
1248 proof - |
|
1249 have "(\<Union>x\<in>S. supp x) = supp (\<Union>x\<in>S. supp x)" |
|
1250 by (rule supp_finite_atom_set[symmetric]) |
|
1251 (rule Union_of_finite_supp_sets[OF fin]) |
|
1252 also have "\<dots> \<subseteq> supp S" |
|
1253 by (rule supp_subset_fresh) |
|
1254 (simp add: Union_fresh) |
|
1255 finally show "(\<Union>x\<in>S. supp x) \<subseteq> supp S" . |
|
1256 qed |
|
1257 |
|
1258 lemma supp_of_finite_sets: |
|
1259 fixes S::"('a::fs set)" |
|
1260 assumes fin: "finite S" |
|
1261 shows "(supp S) = (\<Union>x\<in>S. supp x)" |
|
1262 apply(rule subset_antisym) |
|
1263 apply(rule supp_is_subset) |
|
1264 apply(rule Union_supports_set) |
|
1265 apply(rule Union_of_finite_supp_sets[OF fin]) |
|
1266 apply(rule Union_included_in_supp[OF fin]) |
|
1267 done |
|
1268 |
|
1269 lemma finite_sets_supp: |
|
1270 fixes S::"('a::fs set)" |
|
1271 assumes "finite S" |
|
1272 shows "finite (supp S)" |
|
1273 using assms |
|
1274 by (simp only: supp_of_finite_sets Union_of_finite_supp_sets) |
|
1275 |
|
1276 lemma supp_of_finite_union: |
|
1277 fixes S T::"('a::fs) set" |
|
1278 assumes fin1: "finite S" |
|
1279 and fin2: "finite T" |
|
1280 shows "supp (S \<union> T) = supp S \<union> supp T" |
|
1281 using fin1 fin2 |
|
1282 by (simp add: supp_of_finite_sets) |
|
1283 |
|
1284 lemma supp_of_finite_insert: |
|
1285 fixes S::"('a::fs) set" |
|
1286 assumes fin: "finite S" |
|
1287 shows "supp (insert x S) = supp x \<union> supp S" |
|
1288 using fin |
|
1289 by (simp add: supp_of_finite_sets) |
|
1290 |
|
1291 |
|
1292 subsection {* Type @{typ "'a fset"} is finitely supported *} |
|
1293 |
|
1294 lemma fset_eqvt: |
|
1295 shows "p \<bullet> (fset S) = fset (p \<bullet> S)" |
|
1296 by (lifting set_eqvt) |
|
1297 |
|
1298 lemma supp_fset [simp]: |
|
1299 shows "supp (fset S) = supp S" |
|
1300 unfolding supp_def |
|
1301 by (simp add: fset_eqvt fset_cong) |
|
1302 |
|
1303 lemma supp_empty_fset [simp]: |
|
1304 shows "supp {||} = {}" |
|
1305 unfolding supp_def |
|
1306 by simp |
|
1307 |
|
1308 lemma supp_insert_fset [simp]: |
|
1309 fixes x::"'a::fs" |
|
1310 and S::"'a fset" |
|
1311 shows "supp (insert_fset x S) = supp x \<union> supp S" |
|
1312 apply(subst supp_fset[symmetric]) |
|
1313 apply(simp add: supp_fset supp_of_finite_insert) |
|
1314 done |
|
1315 |
|
1316 lemma fset_finite_supp: |
|
1317 fixes S::"('a::fs) fset" |
|
1318 shows "finite (supp S)" |
|
1319 by (induct S) (simp_all add: finite_supp) |
|
1320 |
|
1321 |
|
1322 instance fset :: (fs) fs |
|
1323 apply (default) |
|
1324 apply (rule fset_finite_supp) |
|
1325 done |
|
1326 |
|
1327 |
|
1328 section {* Fresh-Star *} |
|
1329 |
|
1330 |
|
1331 text {* The fresh-star generalisation of fresh is used in strong |
|
1332 induction principles. *} |
|
1333 |
|
1334 definition |
|
1335 fresh_star :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp>* _" [80,80] 80) |
|
1336 where |
|
1337 "as \<sharp>* x \<equiv> \<forall>a \<in> as. a \<sharp> x" |
|
1338 |
|
1339 lemma fresh_star_supp_conv: |
|
1340 shows "supp x \<sharp>* y \<Longrightarrow> supp y \<sharp>* x" |
|
1341 by (auto simp add: fresh_star_def fresh_def) |
|
1342 |
|
1343 lemma fresh_star_prod: |
|
1344 fixes as::"atom set" |
|
1345 shows "as \<sharp>* (x, y) = (as \<sharp>* x \<and> as \<sharp>* y)" |
|
1346 by (auto simp add: fresh_star_def fresh_Pair) |
|
1347 |
|
1348 lemma fresh_star_union: |
|
1349 shows "(as \<union> bs) \<sharp>* x = (as \<sharp>* x \<and> bs \<sharp>* x)" |
|
1350 by (auto simp add: fresh_star_def) |
|
1351 |
|
1352 lemma fresh_star_insert: |
|
1353 shows "(insert a as) \<sharp>* x = (a \<sharp> x \<and> as \<sharp>* x)" |
|
1354 by (auto simp add: fresh_star_def) |
|
1355 |
|
1356 lemma fresh_star_Un_elim: |
|
1357 "((as \<union> bs) \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (as \<sharp>* x \<Longrightarrow> bs \<sharp>* x \<Longrightarrow> PROP C)" |
|
1358 unfolding fresh_star_def |
|
1359 apply(rule) |
|
1360 apply(erule meta_mp) |
|
1361 apply(auto) |
|
1362 done |
|
1363 |
|
1364 lemma fresh_star_insert_elim: |
|
1365 "(insert a as \<sharp>* x \<Longrightarrow> PROP C) \<equiv> (a \<sharp> x \<Longrightarrow> as \<sharp>* x \<Longrightarrow> PROP C)" |
|
1366 unfolding fresh_star_def |
|
1367 by rule (simp_all add: fresh_star_def) |
|
1368 |
|
1369 lemma fresh_star_empty_elim: |
|
1370 "({} \<sharp>* x \<Longrightarrow> PROP C) \<equiv> PROP C" |
|
1371 by (simp add: fresh_star_def) |
|
1372 |
|
1373 lemma fresh_star_unit_elim: |
|
1374 shows "(a \<sharp>* () \<Longrightarrow> PROP C) \<equiv> PROP C" |
|
1375 by (simp add: fresh_star_def fresh_Unit) |
|
1376 |
|
1377 lemma fresh_star_prod_elim: |
|
1378 shows "(a \<sharp>* (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp>* x \<Longrightarrow> a \<sharp>* y \<Longrightarrow> PROP C)" |
|
1379 by (rule, simp_all add: fresh_star_prod) |
|
1380 |
|
1381 lemma fresh_star_zero: |
|
1382 shows "as \<sharp>* (0::perm)" |
|
1383 unfolding fresh_star_def |
|
1384 by (simp add: fresh_zero_perm) |
|
1385 |
|
1386 lemma fresh_star_plus: |
|
1387 fixes p q::perm |
|
1388 shows "\<lbrakk>a \<sharp>* p; a \<sharp>* q\<rbrakk> \<Longrightarrow> a \<sharp>* (p + q)" |
|
1389 unfolding fresh_star_def |
|
1390 by (simp add: fresh_plus_perm) |
|
1391 |
|
1392 lemma fresh_star_permute_iff: |
|
1393 shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x" |
|
1394 unfolding fresh_star_def |
|
1395 by (metis mem_permute_iff permute_minus_cancel(1) fresh_permute_iff) |
|
1396 |
|
1397 lemma fresh_star_eqvt: |
|
1398 shows "(p \<bullet> (as \<sharp>* x)) = (p \<bullet> as) \<sharp>* (p \<bullet> x)" |
|
1399 unfolding fresh_star_def |
|
1400 unfolding Ball_def |
|
1401 apply(simp add: all_eqvt) |
|
1402 apply(subst permute_fun_def) |
|
1403 apply(simp add: imp_eqvt fresh_eqvt mem_eqvt) |
|
1404 done |
|
1405 |
|
1406 |
|
1407 section {* Induction principle for permutations *} |
|
1408 |
|
1409 |
|
1410 lemma perm_struct_induct[consumes 1, case_names zero swap]: |
|
1411 assumes S: "supp p \<subseteq> S" |
|
1412 and zero: "P 0" |
|
1413 and swap: "\<And>p a b. \<lbrakk>P p; supp p \<subseteq> S; a \<in> S; b \<in> S; a \<noteq> b; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> P ((a \<rightleftharpoons> b) + p)" |
|
1414 shows "P p" |
|
1415 proof - |
|
1416 have "finite (supp p)" by (simp add: finite_supp) |
|
1417 then show "P p" using S |
|
1418 proof(induct A\<equiv>"supp p" arbitrary: p rule: finite_psubset_induct) |
|
1419 case (psubset p) |
|
1420 then have ih: "\<And>q. supp q \<subset> supp p \<Longrightarrow> P q" by auto |
|
1421 have as: "supp p \<subseteq> S" by fact |
|
1422 { assume "supp p = {}" |
|
1423 then have "p = 0" by (simp add: supp_perm expand_perm_eq) |
|
1424 then have "P p" using zero by simp |
|
1425 } |
|
1426 moreover |
|
1427 { assume "supp p \<noteq> {}" |
|
1428 then obtain a where a0: "a \<in> supp p" by blast |
|
1429 then have a1: "p \<bullet> a \<in> S" "a \<in> S" "sort_of (p \<bullet> a) = sort_of a" "p \<bullet> a \<noteq> a" |
|
1430 using as by (auto simp add: supp_atom supp_perm swap_atom) |
|
1431 let ?q = "(p \<bullet> a \<rightleftharpoons> a) + p" |
|
1432 have a2: "supp ?q \<subseteq> supp p" unfolding supp_perm by (auto simp add: swap_atom) |
|
1433 moreover |
|
1434 have "a \<notin> supp ?q" by (simp add: supp_perm) |
|
1435 then have "supp ?q \<noteq> supp p" using a0 by auto |
|
1436 ultimately have "supp ?q \<subset> supp p" using a2 by auto |
|
1437 then have "P ?q" using ih by simp |
|
1438 moreover |
|
1439 have "supp ?q \<subseteq> S" using as a2 by simp |
|
1440 ultimately have "P ((p \<bullet> a \<rightleftharpoons> a) + ?q)" using as a1 swap by simp |
|
1441 moreover |
|
1442 have "p = (p \<bullet> a \<rightleftharpoons> a) + ?q" by (simp add: expand_perm_eq) |
|
1443 ultimately have "P p" by simp |
|
1444 } |
|
1445 ultimately show "P p" by blast |
|
1446 qed |
|
1447 qed |
|
1448 |
|
1449 lemma perm_simple_struct_induct[case_names zero swap]: |
|
1450 assumes zero: "P 0" |
|
1451 and swap: "\<And>p a b. \<lbrakk>P p; a \<noteq> b; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> P ((a \<rightleftharpoons> b) + p)" |
|
1452 shows "P p" |
|
1453 by (rule_tac S="supp p" in perm_struct_induct) |
|
1454 (auto intro: zero swap) |
|
1455 |
|
1456 lemma perm_subset_induct[consumes 1, case_names zero swap plus]: |
|
1457 assumes S: "supp p \<subseteq> S" |
|
1458 assumes zero: "P 0" |
|
1459 assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b; a \<in> S; b \<in> S\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)" |
|
1460 assumes plus: "\<And>p1 p2. \<lbrakk>P p1; P p2; supp p1 \<subseteq> S; supp p2 \<subseteq> S\<rbrakk> \<Longrightarrow> P (p1 + p2)" |
|
1461 shows "P p" |
|
1462 using S |
|
1463 by (induct p rule: perm_struct_induct) |
|
1464 (auto intro: zero plus swap simp add: supp_swap) |
|
1465 |
|
1466 lemma supp_perm_eq: |
|
1467 assumes "(supp x) \<sharp>* p" |
|
1468 shows "p \<bullet> x = x" |
|
1469 proof - |
|
1470 from assms have "supp p \<subseteq> {a. a \<sharp> x}" |
|
1471 unfolding supp_perm fresh_star_def fresh_def by auto |
|
1472 then show "p \<bullet> x = x" |
|
1473 proof (induct p rule: perm_struct_induct) |
|
1474 case zero |
|
1475 show "0 \<bullet> x = x" by simp |
|
1476 next |
|
1477 case (swap p a b) |
|
1478 then have "a \<sharp> x" "b \<sharp> x" "p \<bullet> x = x" by simp_all |
|
1479 then show "((a \<rightleftharpoons> b) + p) \<bullet> x = x" by (simp add: swap_fresh_fresh) |
|
1480 qed |
|
1481 qed |
|
1482 |
|
1483 lemma supp_perm_eq_test: |
|
1484 assumes "(supp x) \<sharp>* p" |
|
1485 shows "p \<bullet> x = x" |
|
1486 proof - |
|
1487 from assms have "supp p \<subseteq> {a. a \<sharp> x}" |
|
1488 unfolding supp_perm fresh_star_def fresh_def by auto |
|
1489 then show "p \<bullet> x = x" |
|
1490 proof (induct p rule: perm_subset_induct) |
|
1491 case zero |
|
1492 show "0 \<bullet> x = x" by simp |
|
1493 next |
|
1494 case (swap a b) |
|
1495 then have "a \<sharp> x" "b \<sharp> x" by simp_all |
|
1496 then show "(a \<rightleftharpoons> b) \<bullet> x = x" by (simp add: swap_fresh_fresh) |
|
1497 next |
|
1498 case (plus p1 p2) |
|
1499 have "p1 \<bullet> x = x" "p2 \<bullet> x = x" by fact+ |
|
1500 then show "(p1 + p2) \<bullet> x = x" by simp |
|
1501 qed |
|
1502 qed |
|
1503 |
|
1504 |
|
1505 section {* Avoiding of atom sets *} |
|
1506 |
|
1507 text {* |
|
1508 For every set of atoms, there is another set of atoms |
|
1509 avoiding a finitely supported c and there is a permutation |
|
1510 which 'translates' between both sets. |
|
1511 *} |
|
1512 |
|
1513 lemma at_set_avoiding_aux: |
|
1514 fixes Xs::"atom set" |
|
1515 and As::"atom set" |
|
1516 assumes b: "Xs \<subseteq> As" |
|
1517 and c: "finite As" |
|
1518 shows "\<exists>p. (p \<bullet> Xs) \<inter> As = {} \<and> (supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))" |
|
1519 proof - |
|
1520 from b c have "finite Xs" by (rule finite_subset) |
|
1521 then show ?thesis using b |
|
1522 proof (induct rule: finite_subset_induct) |
|
1523 case empty |
|
1524 have "0 \<bullet> {} \<inter> As = {}" by simp |
|
1525 moreover |
|
1526 have "supp (0::perm) \<subseteq> {} \<union> 0 \<bullet> {}" by (simp add: supp_zero_perm) |
|
1527 ultimately show ?case by blast |
|
1528 next |
|
1529 case (insert x Xs) |
|
1530 then obtain p where |
|
1531 p1: "(p \<bullet> Xs) \<inter> As = {}" and |
|
1532 p2: "supp p \<subseteq> (Xs \<union> (p \<bullet> Xs))" by blast |
|
1533 from `x \<in> As` p1 have "x \<notin> p \<bullet> Xs" by fast |
|
1534 with `x \<notin> Xs` p2 have "x \<notin> supp p" by fast |
|
1535 hence px: "p \<bullet> x = x" unfolding supp_perm by simp |
|
1536 have "finite (As \<union> p \<bullet> Xs)" |
|
1537 using `finite As` `finite Xs` |
|
1538 by (simp add: permute_set_eq_image) |
|
1539 then obtain y where "y \<notin> (As \<union> p \<bullet> Xs)" "sort_of y = sort_of x" |
|
1540 by (rule obtain_atom) |
|
1541 hence y: "y \<notin> As" "y \<notin> p \<bullet> Xs" "sort_of y = sort_of x" |
|
1542 by simp_all |
|
1543 let ?q = "(x \<rightleftharpoons> y) + p" |
|
1544 have q: "?q \<bullet> insert x Xs = insert y (p \<bullet> Xs)" |
|
1545 unfolding insert_eqvt |
|
1546 using `p \<bullet> x = x` `sort_of y = sort_of x` |
|
1547 using `x \<notin> p \<bullet> Xs` `y \<notin> p \<bullet> Xs` |
|
1548 by (simp add: swap_atom swap_set_not_in) |
|
1549 have "?q \<bullet> insert x Xs \<inter> As = {}" |
|
1550 using `y \<notin> As` `p \<bullet> Xs \<inter> As = {}` |
|
1551 unfolding q by simp |
|
1552 moreover |
|
1553 have "supp ?q \<subseteq> insert x Xs \<union> ?q \<bullet> insert x Xs" |
|
1554 using p2 unfolding q |
|
1555 by (intro subset_trans [OF supp_plus_perm]) |
|
1556 (auto simp add: supp_swap) |
|
1557 ultimately show ?case by blast |
|
1558 qed |
|
1559 qed |
|
1560 |
|
1561 lemma at_set_avoiding: |
|
1562 assumes a: "finite Xs" |
|
1563 and b: "finite (supp c)" |
|
1564 obtains p::"perm" where "(p \<bullet> Xs)\<sharp>*c" and "(supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))" |
|
1565 using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \<union> supp c"] |
|
1566 unfolding fresh_star_def fresh_def by blast |
|
1567 |
|
1568 lemma at_set_avoiding2: |
|
1569 assumes "finite xs" |
|
1570 and "finite (supp c)" "finite (supp x)" |
|
1571 and "xs \<sharp>* x" |
|
1572 shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p" |
|
1573 using assms |
|
1574 apply(erule_tac c="(c, x)" in at_set_avoiding) |
|
1575 apply(simp add: supp_Pair) |
|
1576 apply(rule_tac x="p" in exI) |
|
1577 apply(simp add: fresh_star_prod) |
|
1578 apply(rule fresh_star_supp_conv) |
|
1579 apply(auto simp add: fresh_star_def) |
|
1580 done |
|
1581 |
|
1582 lemma at_set_avoiding2_atom: |
|
1583 assumes "finite (supp c)" "finite (supp x)" |
|
1584 and b: "a \<sharp> x" |
|
1585 shows "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p" |
|
1586 proof - |
|
1587 have a: "{a} \<sharp>* x" unfolding fresh_star_def by (simp add: b) |
|
1588 obtain p where p1: "(p \<bullet> {a}) \<sharp>* c" and p2: "supp x \<sharp>* p" |
|
1589 using at_set_avoiding2[of "{a}" "c" "x"] assms a by blast |
|
1590 have c: "(p \<bullet> a) \<sharp> c" using p1 |
|
1591 unfolding fresh_star_def Ball_def |
|
1592 by(erule_tac x="p \<bullet> a" in allE) (simp add: permute_set_eq) |
|
1593 hence "p \<bullet> a \<sharp> c \<and> supp x \<sharp>* p" using p2 by blast |
|
1594 then show "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p" by blast |
|
1595 qed |
|
1596 |
|
1597 |
|
1598 section {* Concrete Atoms Types *} |
|
1599 |
|
1600 text {* |
|
1601 Class @{text at_base} allows types containing multiple sorts of atoms. |
|
1602 Class @{text at} only allows types with a single sort. |
|
1603 *} |
|
1604 |
|
1605 class at_base = pt + |
|
1606 fixes atom :: "'a \<Rightarrow> atom" |
|
1607 assumes atom_eq_iff [simp]: "atom a = atom b \<longleftrightarrow> a = b" |
|
1608 assumes atom_eqvt: "p \<bullet> (atom a) = atom (p \<bullet> a)" |
|
1609 |
|
1610 class at = at_base + |
|
1611 assumes sort_of_atom_eq [simp]: "sort_of (atom a) = sort_of (atom b)" |
|
1612 |
|
1613 lemma supp_at_base: |
|
1614 fixes a::"'a::at_base" |
|
1615 shows "supp a = {atom a}" |
|
1616 by (simp add: supp_atom [symmetric] supp_def atom_eqvt) |
|
1617 |
|
1618 lemma fresh_at_base: |
|
1619 shows "a \<sharp> b \<longleftrightarrow> a \<noteq> atom b" |
|
1620 unfolding fresh_def by (simp add: supp_at_base) |
|
1621 |
|
1622 instance at_base < fs |
|
1623 proof qed (simp add: supp_at_base) |
|
1624 |
|
1625 lemma at_base_infinite [simp]: |
|
1626 shows "infinite (UNIV :: 'a::at_base set)" (is "infinite ?U") |
|
1627 proof |
|
1628 obtain a :: 'a where "True" by auto |
|
1629 assume "finite ?U" |
|
1630 hence "finite (atom ` ?U)" |
|
1631 by (rule finite_imageI) |
|
1632 then obtain b where b: "b \<notin> atom ` ?U" "sort_of b = sort_of (atom a)" |
|
1633 by (rule obtain_atom) |
|
1634 from b(2) have "b = atom ((atom a \<rightleftharpoons> b) \<bullet> a)" |
|
1635 unfolding atom_eqvt [symmetric] |
|
1636 by (simp add: swap_atom) |
|
1637 hence "b \<in> atom ` ?U" by simp |
|
1638 with b(1) show "False" by simp |
|
1639 qed |
|
1640 |
|
1641 lemma swap_at_base_simps [simp]: |
|
1642 fixes x y::"'a::at_base" |
|
1643 shows "sort_of (atom x) = sort_of (atom y) \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> x = y" |
|
1644 and "sort_of (atom x) = sort_of (atom y) \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> y = x" |
|
1645 and "atom x \<noteq> a \<Longrightarrow> atom x \<noteq> b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x" |
|
1646 unfolding atom_eq_iff [symmetric] |
|
1647 unfolding atom_eqvt [symmetric] |
|
1648 by simp_all |
|
1649 |
|
1650 lemma obtain_at_base: |
|
1651 assumes X: "finite X" |
|
1652 obtains a::"'a::at_base" where "atom a \<notin> X" |
|
1653 proof - |
|
1654 have "inj (atom :: 'a \<Rightarrow> atom)" |
|
1655 by (simp add: inj_on_def) |
|
1656 with X have "finite (atom -` X :: 'a set)" |
|
1657 by (rule finite_vimageI) |
|
1658 with at_base_infinite have "atom -` X \<noteq> (UNIV :: 'a set)" |
|
1659 by auto |
|
1660 then obtain a :: 'a where "atom a \<notin> X" |
|
1661 by auto |
|
1662 thus ?thesis .. |
|
1663 qed |
|
1664 |
|
1665 lemma supp_finite_set_at_base: |
|
1666 assumes a: "finite S" |
|
1667 shows "supp S = atom ` S" |
|
1668 apply(simp add: supp_of_finite_sets[OF a]) |
|
1669 apply(simp add: supp_at_base) |
|
1670 apply(auto) |
|
1671 done |
|
1672 |
|
1673 section {* Infrastructure for concrete atom types *} |
|
1674 |
|
1675 section {* A swapping operation for concrete atoms *} |
|
1676 |
|
1677 definition |
|
1678 flip :: "'a::at_base \<Rightarrow> 'a \<Rightarrow> perm" ("'(_ \<leftrightarrow> _')") |
|
1679 where |
|
1680 "(a \<leftrightarrow> b) = (atom a \<rightleftharpoons> atom b)" |
|
1681 |
|
1682 lemma flip_self [simp]: "(a \<leftrightarrow> a) = 0" |
|
1683 unfolding flip_def by (rule swap_self) |
|
1684 |
|
1685 lemma flip_commute: "(a \<leftrightarrow> b) = (b \<leftrightarrow> a)" |
|
1686 unfolding flip_def by (rule swap_commute) |
|
1687 |
|
1688 lemma minus_flip [simp]: "- (a \<leftrightarrow> b) = (a \<leftrightarrow> b)" |
|
1689 unfolding flip_def by (rule minus_swap) |
|
1690 |
|
1691 lemma add_flip_cancel: "(a \<leftrightarrow> b) + (a \<leftrightarrow> b) = 0" |
|
1692 unfolding flip_def by (rule swap_cancel) |
|
1693 |
|
1694 lemma permute_flip_cancel [simp]: "(a \<leftrightarrow> b) \<bullet> (a \<leftrightarrow> b) \<bullet> x = x" |
|
1695 unfolding permute_plus [symmetric] add_flip_cancel by simp |
|
1696 |
|
1697 lemma permute_flip_cancel2 [simp]: "(a \<leftrightarrow> b) \<bullet> (b \<leftrightarrow> a) \<bullet> x = x" |
|
1698 by (simp add: flip_commute) |
|
1699 |
|
1700 lemma flip_eqvt: |
|
1701 fixes a b c::"'a::at_base" |
|
1702 shows "p \<bullet> (a \<leftrightarrow> b) = (p \<bullet> a \<leftrightarrow> p \<bullet> b)" |
|
1703 unfolding flip_def |
|
1704 by (simp add: swap_eqvt atom_eqvt) |
|
1705 |
|
1706 lemma flip_at_base_simps [simp]: |
|
1707 shows "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> a = b" |
|
1708 and "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> b = a" |
|
1709 and "\<lbrakk>a \<noteq> c; b \<noteq> c\<rbrakk> \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> c = c" |
|
1710 and "sort_of (atom a) \<noteq> sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> x = x" |
|
1711 unfolding flip_def |
|
1712 unfolding atom_eq_iff [symmetric] |
|
1713 unfolding atom_eqvt [symmetric] |
|
1714 by simp_all |
|
1715 |
|
1716 text {* the following two lemmas do not hold for at_base, |
|
1717 only for single sort atoms from at *} |
|
1718 |
|
1719 lemma permute_flip_at: |
|
1720 fixes a b c::"'a::at" |
|
1721 shows "(a \<leftrightarrow> b) \<bullet> c = (if c = a then b else if c = b then a else c)" |
|
1722 unfolding flip_def |
|
1723 apply (rule atom_eq_iff [THEN iffD1]) |
|
1724 apply (subst atom_eqvt [symmetric]) |
|
1725 apply (simp add: swap_atom) |
|
1726 done |
|
1727 |
|
1728 lemma flip_at_simps [simp]: |
|
1729 fixes a b::"'a::at" |
|
1730 shows "(a \<leftrightarrow> b) \<bullet> a = b" |
|
1731 and "(a \<leftrightarrow> b) \<bullet> b = a" |
|
1732 unfolding permute_flip_at by simp_all |
|
1733 |
|
1734 lemma flip_fresh_fresh: |
|
1735 fixes a b::"'a::at_base" |
|
1736 assumes "atom a \<sharp> x" "atom b \<sharp> x" |
|
1737 shows "(a \<leftrightarrow> b) \<bullet> x = x" |
|
1738 using assms |
|
1739 by (simp add: flip_def swap_fresh_fresh) |
|
1740 |
|
1741 subsection {* Syntax for coercing at-elements to the atom-type *} |
|
1742 |
|
1743 syntax |
|
1744 "_atom_constrain" :: "logic \<Rightarrow> type \<Rightarrow> logic" ("_:::_" [4, 0] 3) |
|
1745 |
|
1746 translations |
|
1747 "_atom_constrain a t" => "CONST atom (_constrain a t)" |
|
1748 |
|
1749 |
|
1750 subsection {* A lemma for proving instances of class @{text at}. *} |
|
1751 |
|
1752 setup {* Sign.add_const_constraint (@{const_name "permute"}, NONE) *} |
|
1753 setup {* Sign.add_const_constraint (@{const_name "atom"}, NONE) *} |
|
1754 |
|
1755 text {* |
|
1756 New atom types are defined as subtypes of @{typ atom}. |
|
1757 *} |
|
1758 |
|
1759 lemma exists_eq_simple_sort: |
|
1760 shows "\<exists>a. a \<in> {a. sort_of a = s}" |
|
1761 by (rule_tac x="Atom s 0" in exI, simp) |
|
1762 |
|
1763 lemma exists_eq_sort: |
|
1764 shows "\<exists>a. a \<in> {a. sort_of a \<in> range sort_fun}" |
|
1765 by (rule_tac x="Atom (sort_fun x) y" in exI, simp) |
|
1766 |
|
1767 lemma at_base_class: |
|
1768 fixes sort_fun :: "'b \<Rightarrow>atom_sort" |
|
1769 fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a" |
|
1770 assumes type: "type_definition Rep Abs {a. sort_of a \<in> range sort_fun}" |
|
1771 assumes atom_def: "\<And>a. atom a = Rep a" |
|
1772 assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)" |
|
1773 shows "OFCLASS('a, at_base_class)" |
|
1774 proof |
|
1775 interpret type_definition Rep Abs "{a. sort_of a \<in> range sort_fun}" by (rule type) |
|
1776 have sort_of_Rep: "\<And>a. sort_of (Rep a) \<in> range sort_fun" using Rep by simp |
|
1777 fix a b :: 'a and p p1 p2 :: perm |
|
1778 show "0 \<bullet> a = a" |
|
1779 unfolding permute_def by (simp add: Rep_inverse) |
|
1780 show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a" |
|
1781 unfolding permute_def by (simp add: Abs_inverse sort_of_Rep) |
|
1782 show "atom a = atom b \<longleftrightarrow> a = b" |
|
1783 unfolding atom_def by (simp add: Rep_inject) |
|
1784 show "p \<bullet> atom a = atom (p \<bullet> a)" |
|
1785 unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep) |
|
1786 qed |
|
1787 |
|
1788 (* |
|
1789 lemma at_class: |
|
1790 fixes s :: atom_sort |
|
1791 fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a" |
|
1792 assumes type: "type_definition Rep Abs {a. sort_of a \<in> range (\<lambda>x::unit. s)}" |
|
1793 assumes atom_def: "\<And>a. atom a = Rep a" |
|
1794 assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)" |
|
1795 shows "OFCLASS('a, at_class)" |
|
1796 proof |
|
1797 interpret type_definition Rep Abs "{a. sort_of a \<in> range (\<lambda>x::unit. s)}" by (rule type) |
|
1798 have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def) |
|
1799 fix a b :: 'a and p p1 p2 :: perm |
|
1800 show "0 \<bullet> a = a" |
|
1801 unfolding permute_def by (simp add: Rep_inverse) |
|
1802 show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a" |
|
1803 unfolding permute_def by (simp add: Abs_inverse sort_of_Rep) |
|
1804 show "sort_of (atom a) = sort_of (atom b)" |
|
1805 unfolding atom_def by (simp add: sort_of_Rep) |
|
1806 show "atom a = atom b \<longleftrightarrow> a = b" |
|
1807 unfolding atom_def by (simp add: Rep_inject) |
|
1808 show "p \<bullet> atom a = atom (p \<bullet> a)" |
|
1809 unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep) |
|
1810 qed |
|
1811 *) |
|
1812 |
|
1813 lemma at_class: |
|
1814 fixes s :: atom_sort |
|
1815 fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a" |
|
1816 assumes type: "type_definition Rep Abs {a. sort_of a = s}" |
|
1817 assumes atom_def: "\<And>a. atom a = Rep a" |
|
1818 assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)" |
|
1819 shows "OFCLASS('a, at_class)" |
|
1820 proof |
|
1821 interpret type_definition Rep Abs "{a. sort_of a = s}" by (rule type) |
|
1822 have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def) |
|
1823 fix a b :: 'a and p p1 p2 :: perm |
|
1824 show "0 \<bullet> a = a" |
|
1825 unfolding permute_def by (simp add: Rep_inverse) |
|
1826 show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a" |
|
1827 unfolding permute_def by (simp add: Abs_inverse sort_of_Rep) |
|
1828 show "sort_of (atom a) = sort_of (atom b)" |
|
1829 unfolding atom_def by (simp add: sort_of_Rep) |
|
1830 show "atom a = atom b \<longleftrightarrow> a = b" |
|
1831 unfolding atom_def by (simp add: Rep_inject) |
|
1832 show "p \<bullet> atom a = atom (p \<bullet> a)" |
|
1833 unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep) |
|
1834 qed |
|
1835 |
|
1836 setup {* Sign.add_const_constraint |
|
1837 (@{const_name "permute"}, SOME @{typ "perm \<Rightarrow> 'a::pt \<Rightarrow> 'a"}) *} |
|
1838 setup {* Sign.add_const_constraint |
|
1839 (@{const_name "atom"}, SOME @{typ "'a::at_base \<Rightarrow> atom"}) *} |
|
1840 |
|
1841 |
|
1842 |
|
1843 section {* The freshness lemma according to Andy Pitts *} |
|
1844 |
|
1845 lemma freshness_lemma: |
|
1846 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
1847 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
1848 shows "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
1849 proof - |
|
1850 from a obtain b where a1: "atom b \<sharp> h" and a2: "atom b \<sharp> h b" |
|
1851 by (auto simp add: fresh_Pair) |
|
1852 show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
1853 proof (intro exI allI impI) |
|
1854 fix a :: 'a |
|
1855 assume a3: "atom a \<sharp> h" |
|
1856 show "h a = h b" |
|
1857 proof (cases "a = b") |
|
1858 assume "a = b" |
|
1859 thus "h a = h b" by simp |
|
1860 next |
|
1861 assume "a \<noteq> b" |
|
1862 hence "atom a \<sharp> b" by (simp add: fresh_at_base) |
|
1863 with a3 have "atom a \<sharp> h b" |
|
1864 by (rule fresh_fun_app) |
|
1865 with a2 have d1: "(atom b \<rightleftharpoons> atom a) \<bullet> (h b) = (h b)" |
|
1866 by (rule swap_fresh_fresh) |
|
1867 from a1 a3 have d2: "(atom b \<rightleftharpoons> atom a) \<bullet> h = h" |
|
1868 by (rule swap_fresh_fresh) |
|
1869 from d1 have "h b = (atom b \<rightleftharpoons> atom a) \<bullet> (h b)" by simp |
|
1870 also have "\<dots> = ((atom b \<rightleftharpoons> atom a) \<bullet> h) ((atom b \<rightleftharpoons> atom a) \<bullet> b)" |
|
1871 by (rule permute_fun_app_eq) |
|
1872 also have "\<dots> = h a" |
|
1873 using d2 by simp |
|
1874 finally show "h a = h b" by simp |
|
1875 qed |
|
1876 qed |
|
1877 qed |
|
1878 |
|
1879 lemma freshness_lemma_unique: |
|
1880 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
1881 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
1882 shows "\<exists>!x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
1883 proof (rule ex_ex1I) |
|
1884 from a show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
1885 by (rule freshness_lemma) |
|
1886 next |
|
1887 fix x y |
|
1888 assume x: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
1889 assume y: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = y" |
|
1890 from a x y show "x = y" |
|
1891 by (auto simp add: fresh_Pair) |
|
1892 qed |
|
1893 |
|
1894 text {* packaging the freshness lemma into a function *} |
|
1895 |
|
1896 definition |
|
1897 fresh_fun :: "('a::at \<Rightarrow> 'b::pt) \<Rightarrow> 'b" |
|
1898 where |
|
1899 "fresh_fun h = (THE x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x)" |
|
1900 |
|
1901 lemma fresh_fun_apply: |
|
1902 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
1903 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
1904 assumes b: "atom a \<sharp> h" |
|
1905 shows "fresh_fun h = h a" |
|
1906 unfolding fresh_fun_def |
|
1907 proof (rule the_equality) |
|
1908 show "\<forall>a'. atom a' \<sharp> h \<longrightarrow> h a' = h a" |
|
1909 proof (intro strip) |
|
1910 fix a':: 'a |
|
1911 assume c: "atom a' \<sharp> h" |
|
1912 from a have "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" by (rule freshness_lemma) |
|
1913 with b c show "h a' = h a" by auto |
|
1914 qed |
|
1915 next |
|
1916 fix fr :: 'b |
|
1917 assume "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = fr" |
|
1918 with b show "fr = h a" by auto |
|
1919 qed |
|
1920 |
|
1921 lemma fresh_fun_apply': |
|
1922 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
1923 assumes a: "atom a \<sharp> h" "atom a \<sharp> h a" |
|
1924 shows "fresh_fun h = h a" |
|
1925 apply (rule fresh_fun_apply) |
|
1926 apply (auto simp add: fresh_Pair intro: a) |
|
1927 done |
|
1928 |
|
1929 lemma fresh_fun_eqvt: |
|
1930 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
1931 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
1932 shows "p \<bullet> (fresh_fun h) = fresh_fun (p \<bullet> h)" |
|
1933 using a |
|
1934 apply (clarsimp simp add: fresh_Pair) |
|
1935 apply (subst fresh_fun_apply', assumption+) |
|
1936 apply (drule fresh_permute_iff [where p=p, THEN iffD2]) |
|
1937 apply (drule fresh_permute_iff [where p=p, THEN iffD2]) |
|
1938 apply (simp add: atom_eqvt permute_fun_app_eq [where f=h]) |
|
1939 apply (erule (1) fresh_fun_apply' [symmetric]) |
|
1940 done |
|
1941 |
|
1942 lemma fresh_fun_supports: |
|
1943 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
1944 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
1945 shows "(supp h) supports (fresh_fun h)" |
|
1946 apply (simp add: supports_def fresh_def [symmetric]) |
|
1947 apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh) |
|
1948 done |
|
1949 |
|
1950 notation fresh_fun (binder "FRESH " 10) |
|
1951 |
|
1952 lemma FRESH_f_iff: |
|
1953 fixes P :: "'a::at \<Rightarrow> 'b::pure" |
|
1954 fixes f :: "'b \<Rightarrow> 'c::pure" |
|
1955 assumes P: "finite (supp P)" |
|
1956 shows "(FRESH x. f (P x)) = f (FRESH x. P x)" |
|
1957 proof - |
|
1958 obtain a::'a where "atom a \<notin> supp P" |
|
1959 using P by (rule obtain_at_base) |
|
1960 hence "atom a \<sharp> P" |
|
1961 by (simp add: fresh_def) |
|
1962 show "(FRESH x. f (P x)) = f (FRESH x. P x)" |
|
1963 apply (subst fresh_fun_apply' [where a=a, OF _ pure_fresh]) |
|
1964 apply (cut_tac `atom a \<sharp> P`) |
|
1965 apply (simp add: fresh_conv_MOST) |
|
1966 apply (elim MOST_rev_mp, rule MOST_I, clarify) |
|
1967 apply (simp add: permute_fun_def permute_pure fun_eq_iff) |
|
1968 apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> P` pure_fresh]) |
|
1969 apply (rule refl) |
|
1970 done |
|
1971 qed |
|
1972 |
|
1973 lemma FRESH_binop_iff: |
|
1974 fixes P :: "'a::at \<Rightarrow> 'b::pure" |
|
1975 fixes Q :: "'a::at \<Rightarrow> 'c::pure" |
|
1976 fixes binop :: "'b \<Rightarrow> 'c \<Rightarrow> 'd::pure" |
|
1977 assumes P: "finite (supp P)" |
|
1978 and Q: "finite (supp Q)" |
|
1979 shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)" |
|
1980 proof - |
|
1981 from assms have "finite (supp P \<union> supp Q)" by simp |
|
1982 then obtain a::'a where "atom a \<notin> (supp P \<union> supp Q)" |
|
1983 by (rule obtain_at_base) |
|
1984 hence "atom a \<sharp> P" and "atom a \<sharp> Q" |
|
1985 by (simp_all add: fresh_def) |
|
1986 show ?thesis |
|
1987 apply (subst fresh_fun_apply' [where a=a, OF _ pure_fresh]) |
|
1988 apply (cut_tac `atom a \<sharp> P` `atom a \<sharp> Q`) |
|
1989 apply (simp add: fresh_conv_MOST) |
|
1990 apply (elim MOST_rev_mp, rule MOST_I, clarify) |
|
1991 apply (simp add: permute_fun_def permute_pure fun_eq_iff) |
|
1992 apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> P` pure_fresh]) |
|
1993 apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> Q` pure_fresh]) |
|
1994 apply (rule refl) |
|
1995 done |
|
1996 qed |
|
1997 |
|
1998 lemma FRESH_conj_iff: |
|
1999 fixes P Q :: "'a::at \<Rightarrow> bool" |
|
2000 assumes P: "finite (supp P)" and Q: "finite (supp Q)" |
|
2001 shows "(FRESH x. P x \<and> Q x) \<longleftrightarrow> (FRESH x. P x) \<and> (FRESH x. Q x)" |
|
2002 using P Q by (rule FRESH_binop_iff) |
|
2003 |
|
2004 lemma FRESH_disj_iff: |
|
2005 fixes P Q :: "'a::at \<Rightarrow> bool" |
|
2006 assumes P: "finite (supp P)" and Q: "finite (supp Q)" |
|
2007 shows "(FRESH x. P x \<or> Q x) \<longleftrightarrow> (FRESH x. P x) \<or> (FRESH x. Q x)" |
|
2008 using P Q by (rule FRESH_binop_iff) |
|
2009 |
|
2010 |
|
2011 section {* Library functions for the nominal infrastructure *} |
|
2012 |
|
2013 use "nominal_library.ML" |
|
2014 |
|
2015 |
|
2016 section {* Automation for creating concrete atom types *} |
|
2017 |
|
2018 text {* at the moment only single-sort concrete atoms are supported *} |
|
2019 |
|
2020 use "nominal_atoms.ML" |
|
2021 |
|
2022 |
|
2023 |
|
2024 end |
|