|
1 (* Title: Nominal2_Supp |
|
2 Authors: Brian Huffman, Christian Urban |
|
3 |
|
4 Supplementary Lemmas and Definitions for |
|
5 Nominal Isabelle. |
|
6 *) |
|
7 theory Nominal2_Supp |
|
8 imports Nominal2_Base Nominal2_Eqvt Nominal2_Atoms |
|
9 begin |
|
10 |
|
11 |
|
12 section {* Fresh-Star *} |
|
13 |
|
14 text {* The fresh-star generalisation of fresh is used in strong |
|
15 induction principles. *} |
|
16 |
|
17 definition |
|
18 fresh_star :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp>* _" [80,80] 80) |
|
19 where |
|
20 "xs \<sharp>* c \<equiv> \<forall>x \<in> xs. x \<sharp> c" |
|
21 |
|
22 lemma fresh_star_prod: |
|
23 fixes xs::"atom set" |
|
24 shows "xs \<sharp>* (a, b) = (xs \<sharp>* a \<and> xs \<sharp>* b)" |
|
25 by (auto simp add: fresh_star_def fresh_Pair) |
|
26 |
|
27 lemma fresh_star_union: |
|
28 shows "(xs \<union> ys) \<sharp>* c = (xs \<sharp>* c \<and> ys \<sharp>* c)" |
|
29 by (auto simp add: fresh_star_def) |
|
30 |
|
31 lemma fresh_star_insert: |
|
32 shows "(insert x ys) \<sharp>* c = (x \<sharp> c \<and> ys \<sharp>* c)" |
|
33 by (auto simp add: fresh_star_def) |
|
34 |
|
35 lemma fresh_star_Un_elim: |
|
36 "((S \<union> T) \<sharp>* c \<Longrightarrow> PROP C) \<equiv> (S \<sharp>* c \<Longrightarrow> T \<sharp>* c \<Longrightarrow> PROP C)" |
|
37 unfolding fresh_star_def |
|
38 apply(rule) |
|
39 apply(erule meta_mp) |
|
40 apply(auto) |
|
41 done |
|
42 |
|
43 lemma fresh_star_insert_elim: |
|
44 "(insert x S \<sharp>* c \<Longrightarrow> PROP C) \<equiv> (x \<sharp> c \<Longrightarrow> S \<sharp>* c \<Longrightarrow> PROP C)" |
|
45 unfolding fresh_star_def |
|
46 by rule (simp_all add: fresh_star_def) |
|
47 |
|
48 lemma fresh_star_empty_elim: |
|
49 "({} \<sharp>* c \<Longrightarrow> PROP C) \<equiv> PROP C" |
|
50 by (simp add: fresh_star_def) |
|
51 |
|
52 lemma fresh_star_unit_elim: |
|
53 shows "(a \<sharp>* () \<Longrightarrow> PROP C) \<equiv> PROP C" |
|
54 by (simp add: fresh_star_def fresh_unit) |
|
55 |
|
56 lemma fresh_star_prod_elim: |
|
57 shows "(a \<sharp>* (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp>* x \<Longrightarrow> a \<sharp>* y \<Longrightarrow> PROP C)" |
|
58 by (rule, simp_all add: fresh_star_prod) |
|
59 |
|
60 |
|
61 section {* Avoiding of atom sets *} |
|
62 |
|
63 text {* |
|
64 For every set of atoms, there is another set of atoms |
|
65 avoiding a finitely supported c and there is a permutation |
|
66 which 'translates' between both sets. |
|
67 *} |
|
68 |
|
69 lemma at_set_avoiding_aux: |
|
70 fixes Xs::"atom set" |
|
71 and As::"atom set" |
|
72 assumes b: "Xs \<subseteq> As" |
|
73 and c: "finite As" |
|
74 shows "\<exists>p. (p \<bullet> Xs) \<inter> As = {} \<and> (supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))" |
|
75 proof - |
|
76 from b c have "finite Xs" by (rule finite_subset) |
|
77 then show ?thesis using b |
|
78 proof (induct rule: finite_subset_induct) |
|
79 case empty |
|
80 have "0 \<bullet> {} \<inter> As = {}" by simp |
|
81 moreover |
|
82 have "supp (0::perm) \<subseteq> {} \<union> 0 \<bullet> {}" by (simp add: supp_zero_perm) |
|
83 ultimately show ?case by blast |
|
84 next |
|
85 case (insert x Xs) |
|
86 then obtain p where |
|
87 p1: "(p \<bullet> Xs) \<inter> As = {}" and |
|
88 p2: "supp p \<subseteq> (Xs \<union> (p \<bullet> Xs))" by blast |
|
89 from `x \<in> As` p1 have "x \<notin> p \<bullet> Xs" by fast |
|
90 with `x \<notin> Xs` p2 have "x \<notin> supp p" by fast |
|
91 hence px: "p \<bullet> x = x" unfolding supp_perm by simp |
|
92 have "finite (As \<union> p \<bullet> Xs)" |
|
93 using `finite As` `finite Xs` |
|
94 by (simp add: permute_set_eq_image) |
|
95 then obtain y where "y \<notin> (As \<union> p \<bullet> Xs)" "sort_of y = sort_of x" |
|
96 by (rule obtain_atom) |
|
97 hence y: "y \<notin> As" "y \<notin> p \<bullet> Xs" "sort_of y = sort_of x" |
|
98 by simp_all |
|
99 let ?q = "(x \<rightleftharpoons> y) + p" |
|
100 have q: "?q \<bullet> insert x Xs = insert y (p \<bullet> Xs)" |
|
101 unfolding insert_eqvt |
|
102 using `p \<bullet> x = x` `sort_of y = sort_of x` |
|
103 using `x \<notin> p \<bullet> Xs` `y \<notin> p \<bullet> Xs` |
|
104 by (simp add: swap_atom swap_set_not_in) |
|
105 have "?q \<bullet> insert x Xs \<inter> As = {}" |
|
106 using `y \<notin> As` `p \<bullet> Xs \<inter> As = {}` |
|
107 unfolding q by simp |
|
108 moreover |
|
109 have "supp ?q \<subseteq> insert x Xs \<union> ?q \<bullet> insert x Xs" |
|
110 using p2 unfolding q |
|
111 apply (intro subset_trans [OF supp_plus_perm]) |
|
112 apply (auto simp add: supp_swap) |
|
113 done |
|
114 ultimately show ?case by blast |
|
115 qed |
|
116 qed |
|
117 |
|
118 lemma at_set_avoiding: |
|
119 assumes a: "finite Xs" |
|
120 and b: "finite (supp c)" |
|
121 obtains p::"perm" where "(p \<bullet> Xs)\<sharp>*c" and "(supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))" |
|
122 using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \<union> supp c"] |
|
123 unfolding fresh_star_def fresh_def by blast |
|
124 |
|
125 |
|
126 section {* The freshness lemma according to Andrew Pitts *} |
|
127 |
|
128 lemma fresh_conv_MOST: |
|
129 shows "a \<sharp> x \<longleftrightarrow> (MOST b. (a \<rightleftharpoons> b) \<bullet> x = x)" |
|
130 unfolding fresh_def supp_def MOST_iff_cofinite by simp |
|
131 |
|
132 lemma fresh_apply: |
|
133 assumes "a \<sharp> f" and "a \<sharp> x" |
|
134 shows "a \<sharp> f x" |
|
135 using assms unfolding fresh_conv_MOST |
|
136 unfolding permute_fun_app_eq [where f=f] |
|
137 by (elim MOST_rev_mp, simp) |
|
138 |
|
139 lemma freshness_lemma: |
|
140 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
141 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
142 shows "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
143 proof - |
|
144 from a obtain b where a1: "atom b \<sharp> h" and a2: "atom b \<sharp> h b" |
|
145 by (auto simp add: fresh_Pair) |
|
146 show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
147 proof (intro exI allI impI) |
|
148 fix a :: 'a |
|
149 assume a3: "atom a \<sharp> h" |
|
150 show "h a = h b" |
|
151 proof (cases "a = b") |
|
152 assume "a = b" |
|
153 thus "h a = h b" by simp |
|
154 next |
|
155 assume "a \<noteq> b" |
|
156 hence "atom a \<sharp> b" by (simp add: fresh_at_base) |
|
157 with a3 have "atom a \<sharp> h b" by (rule fresh_apply) |
|
158 with a2 have d1: "(atom b \<rightleftharpoons> atom a) \<bullet> (h b) = (h b)" |
|
159 by (rule swap_fresh_fresh) |
|
160 from a1 a3 have d2: "(atom b \<rightleftharpoons> atom a) \<bullet> h = h" |
|
161 by (rule swap_fresh_fresh) |
|
162 from d1 have "h b = (atom b \<rightleftharpoons> atom a) \<bullet> (h b)" by simp |
|
163 also have "\<dots> = ((atom b \<rightleftharpoons> atom a) \<bullet> h) ((atom b \<rightleftharpoons> atom a) \<bullet> b)" |
|
164 by (rule permute_fun_app_eq) |
|
165 also have "\<dots> = h a" |
|
166 using d2 by simp |
|
167 finally show "h a = h b" by simp |
|
168 qed |
|
169 qed |
|
170 qed |
|
171 |
|
172 lemma freshness_lemma_unique: |
|
173 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
174 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
175 shows "\<exists>!x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
176 proof (rule ex_ex1I) |
|
177 from a show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
178 by (rule freshness_lemma) |
|
179 next |
|
180 fix x y |
|
181 assume x: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" |
|
182 assume y: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = y" |
|
183 from a x y show "x = y" |
|
184 by (auto simp add: fresh_Pair) |
|
185 qed |
|
186 |
|
187 text {* packaging the freshness lemma into a function *} |
|
188 |
|
189 definition |
|
190 fresh_fun :: "('a::at \<Rightarrow> 'b::pt) \<Rightarrow> 'b" |
|
191 where |
|
192 "fresh_fun h = (THE x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x)" |
|
193 |
|
194 lemma fresh_fun_app: |
|
195 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
196 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
197 assumes b: "atom a \<sharp> h" |
|
198 shows "fresh_fun h = h a" |
|
199 unfolding fresh_fun_def |
|
200 proof (rule the_equality) |
|
201 show "\<forall>a'. atom a' \<sharp> h \<longrightarrow> h a' = h a" |
|
202 proof (intro strip) |
|
203 fix a':: 'a |
|
204 assume c: "atom a' \<sharp> h" |
|
205 from a have "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" by (rule freshness_lemma) |
|
206 with b c show "h a' = h a" by auto |
|
207 qed |
|
208 next |
|
209 fix fr :: 'b |
|
210 assume "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = fr" |
|
211 with b show "fr = h a" by auto |
|
212 qed |
|
213 |
|
214 lemma fresh_fun_app': |
|
215 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
216 assumes a: "atom a \<sharp> h" "atom a \<sharp> h a" |
|
217 shows "fresh_fun h = h a" |
|
218 apply (rule fresh_fun_app) |
|
219 apply (auto simp add: fresh_Pair intro: a) |
|
220 done |
|
221 |
|
222 lemma fresh_fun_eqvt: |
|
223 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
224 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
225 shows "p \<bullet> (fresh_fun h) = fresh_fun (p \<bullet> h)" |
|
226 using a |
|
227 apply (clarsimp simp add: fresh_Pair) |
|
228 apply (subst fresh_fun_app', assumption+) |
|
229 apply (drule fresh_permute_iff [where p=p, THEN iffD2]) |
|
230 apply (drule fresh_permute_iff [where p=p, THEN iffD2]) |
|
231 apply (simp add: atom_eqvt permute_fun_app_eq [where f=h]) |
|
232 apply (erule (1) fresh_fun_app' [symmetric]) |
|
233 done |
|
234 |
|
235 lemma fresh_fun_supports: |
|
236 fixes h :: "'a::at \<Rightarrow> 'b::pt" |
|
237 assumes a: "\<exists>a. atom a \<sharp> (h, h a)" |
|
238 shows "(supp h) supports (fresh_fun h)" |
|
239 apply (simp add: supports_def fresh_def [symmetric]) |
|
240 apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh) |
|
241 done |
|
242 |
|
243 notation fresh_fun (binder "FRESH " 10) |
|
244 |
|
245 lemma FRESH_f_iff: |
|
246 fixes P :: "'a::at \<Rightarrow> 'b::pure" |
|
247 fixes f :: "'b \<Rightarrow> 'c::pure" |
|
248 assumes P: "finite (supp P)" |
|
249 shows "(FRESH x. f (P x)) = f (FRESH x. P x)" |
|
250 proof - |
|
251 obtain a::'a where "atom a \<notin> supp P" |
|
252 using P by (rule obtain_at_base) |
|
253 hence "atom a \<sharp> P" |
|
254 by (simp add: fresh_def) |
|
255 show "(FRESH x. f (P x)) = f (FRESH x. P x)" |
|
256 apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh]) |
|
257 apply (cut_tac `atom a \<sharp> P`) |
|
258 apply (simp add: fresh_conv_MOST) |
|
259 apply (elim MOST_rev_mp, rule MOST_I, clarify) |
|
260 apply (simp add: permute_fun_def permute_pure expand_fun_eq) |
|
261 apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> P` pure_fresh]) |
|
262 apply (rule refl) |
|
263 done |
|
264 qed |
|
265 |
|
266 lemma FRESH_binop_iff: |
|
267 fixes P :: "'a::at \<Rightarrow> 'b::pure" |
|
268 fixes Q :: "'a::at \<Rightarrow> 'c::pure" |
|
269 fixes binop :: "'b \<Rightarrow> 'c \<Rightarrow> 'd::pure" |
|
270 assumes P: "finite (supp P)" |
|
271 and Q: "finite (supp Q)" |
|
272 shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)" |
|
273 proof - |
|
274 from assms have "finite (supp P \<union> supp Q)" by simp |
|
275 then obtain a::'a where "atom a \<notin> (supp P \<union> supp Q)" |
|
276 by (rule obtain_at_base) |
|
277 hence "atom a \<sharp> P" and "atom a \<sharp> Q" |
|
278 by (simp_all add: fresh_def) |
|
279 show ?thesis |
|
280 apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh]) |
|
281 apply (cut_tac `atom a \<sharp> P` `atom a \<sharp> Q`) |
|
282 apply (simp add: fresh_conv_MOST) |
|
283 apply (elim MOST_rev_mp, rule MOST_I, clarify) |
|
284 apply (simp add: permute_fun_def permute_pure expand_fun_eq) |
|
285 apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> P` pure_fresh]) |
|
286 apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> Q` pure_fresh]) |
|
287 apply (rule refl) |
|
288 done |
|
289 qed |
|
290 |
|
291 lemma FRESH_conj_iff: |
|
292 fixes P Q :: "'a::at \<Rightarrow> bool" |
|
293 assumes P: "finite (supp P)" and Q: "finite (supp Q)" |
|
294 shows "(FRESH x. P x \<and> Q x) \<longleftrightarrow> (FRESH x. P x) \<and> (FRESH x. Q x)" |
|
295 using P Q by (rule FRESH_binop_iff) |
|
296 |
|
297 lemma FRESH_disj_iff: |
|
298 fixes P Q :: "'a::at \<Rightarrow> bool" |
|
299 assumes P: "finite (supp P)" and Q: "finite (supp Q)" |
|
300 shows "(FRESH x. P x \<or> Q x) \<longleftrightarrow> (FRESH x. P x) \<or> (FRESH x. Q x)" |
|
301 using P Q by (rule FRESH_binop_iff) |
|
302 |
|
303 |
|
304 section {* An example of a function without finite support *} |
|
305 |
|
306 primrec |
|
307 nat_of :: "atom \<Rightarrow> nat" |
|
308 where |
|
309 "nat_of (Atom s n) = n" |
|
310 |
|
311 lemma atom_eq_iff: |
|
312 fixes a b :: atom |
|
313 shows "a = b \<longleftrightarrow> sort_of a = sort_of b \<and> nat_of a = nat_of b" |
|
314 by (induct a, induct b, simp) |
|
315 |
|
316 lemma not_fresh_nat_of: |
|
317 shows "\<not> a \<sharp> nat_of" |
|
318 unfolding fresh_def supp_def |
|
319 proof (clarsimp) |
|
320 assume "finite {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of}" |
|
321 hence "finite ({a} \<union> {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of})" |
|
322 by simp |
|
323 then obtain b where |
|
324 b1: "b \<noteq> a" and |
|
325 b2: "sort_of b = sort_of a" and |
|
326 b3: "(a \<rightleftharpoons> b) \<bullet> nat_of = nat_of" |
|
327 by (rule obtain_atom) auto |
|
328 have "nat_of a = (a \<rightleftharpoons> b) \<bullet> (nat_of a)" by (simp add: permute_nat_def) |
|
329 also have "\<dots> = ((a \<rightleftharpoons> b) \<bullet> nat_of) ((a \<rightleftharpoons> b) \<bullet> a)" by (simp add: permute_fun_app_eq) |
|
330 also have "\<dots> = nat_of ((a \<rightleftharpoons> b) \<bullet> a)" using b3 by simp |
|
331 also have "\<dots> = nat_of b" using b2 by simp |
|
332 finally have "nat_of a = nat_of b" by simp |
|
333 with b2 have "a = b" by (simp add: atom_eq_iff) |
|
334 with b1 show "False" by simp |
|
335 qed |
|
336 |
|
337 lemma supp_nat_of: |
|
338 shows "supp nat_of = UNIV" |
|
339 using not_fresh_nat_of [unfolded fresh_def] by auto |
|
340 |
|
341 |
|
342 section {* Support for sets of atoms *} |
|
343 |
|
344 lemma supp_finite_atom_set: |
|
345 fixes S::"atom set" |
|
346 assumes "finite S" |
|
347 shows "supp S = S" |
|
348 apply(rule finite_supp_unique) |
|
349 apply(simp add: supports_def) |
|
350 apply(simp add: swap_set_not_in) |
|
351 apply(rule assms) |
|
352 apply(simp add: swap_set_in) |
|
353 done |
|
354 |
|
355 |
|
356 (* |
|
357 lemma supp_infinite: |
|
358 fixes S::"atom set" |
|
359 assumes asm: "finite (UNIV - S)" |
|
360 shows "(supp S) = (UNIV - S)" |
|
361 apply(rule finite_supp_unique) |
|
362 apply(auto simp add: supports_def permute_set_eq swap_atom)[1] |
|
363 apply(rule asm) |
|
364 apply(auto simp add: permute_set_eq swap_atom)[1] |
|
365 done |
|
366 |
|
367 lemma supp_infinite_coinfinite: |
|
368 fixes S::"atom set" |
|
369 assumes asm1: "infinite S" |
|
370 and asm2: "infinite (UNIV-S)" |
|
371 shows "(supp S) = (UNIV::atom set)" |
|
372 *) |
|
373 |
|
374 |
|
375 end |