|
1 (* Title: Nominal2_Eqvt |
|
2 Authors: Brian Huffman, Christian Urban |
|
3 |
|
4 Equivariance, Supp and Fresh Lemmas for Operators. |
|
5 (Contains most, but not all such lemmas.) |
|
6 *) |
|
7 theory Nominal2_Eqvt |
|
8 imports Nominal2_Base |
|
9 uses ("nominal_thmdecls.ML") |
|
10 ("nominal_permeq.ML") |
|
11 begin |
|
12 |
|
13 section {* Logical Operators *} |
|
14 |
|
15 |
|
16 lemma eq_eqvt: |
|
17 shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)" |
|
18 unfolding permute_eq_iff permute_bool_def .. |
|
19 |
|
20 lemma if_eqvt: |
|
21 shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)" |
|
22 by (simp add: permute_fun_def permute_bool_def) |
|
23 |
|
24 lemma True_eqvt: |
|
25 shows "p \<bullet> True = True" |
|
26 unfolding permute_bool_def .. |
|
27 |
|
28 lemma False_eqvt: |
|
29 shows "p \<bullet> False = False" |
|
30 unfolding permute_bool_def .. |
|
31 |
|
32 lemma imp_eqvt: |
|
33 shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))" |
|
34 by (simp add: permute_bool_def) |
|
35 |
|
36 lemma conj_eqvt: |
|
37 shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))" |
|
38 by (simp add: permute_bool_def) |
|
39 |
|
40 lemma disj_eqvt: |
|
41 shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))" |
|
42 by (simp add: permute_bool_def) |
|
43 |
|
44 lemma Not_eqvt: |
|
45 shows "p \<bullet> (\<not> A) = (\<not> (p \<bullet> A))" |
|
46 by (simp add: permute_bool_def) |
|
47 |
|
48 lemma all_eqvt: |
|
49 shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)" |
|
50 unfolding permute_fun_def permute_bool_def |
|
51 by (auto, drule_tac x="p \<bullet> x" in spec, simp) |
|
52 |
|
53 lemma all_eqvt2: |
|
54 shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))" |
|
55 unfolding permute_fun_def permute_bool_def |
|
56 by (auto, drule_tac x="p \<bullet> x" in spec, simp) |
|
57 |
|
58 lemma ex_eqvt: |
|
59 shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)" |
|
60 unfolding permute_fun_def permute_bool_def |
|
61 by (auto, rule_tac x="p \<bullet> x" in exI, simp) |
|
62 |
|
63 lemma ex_eqvt2: |
|
64 shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))" |
|
65 unfolding permute_fun_def permute_bool_def |
|
66 by (auto, rule_tac x="p \<bullet> x" in exI, simp) |
|
67 |
|
68 lemma ex1_eqvt: |
|
69 shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. (p \<bullet> P) x)" |
|
70 unfolding Ex1_def |
|
71 by (simp add: ex_eqvt permute_fun_def conj_eqvt all_eqvt imp_eqvt eq_eqvt) |
|
72 |
|
73 lemma ex1_eqvt2: |
|
74 shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))" |
|
75 unfolding Ex1_def ex_eqvt2 conj_eqvt all_eqvt2 imp_eqvt eq_eqvt |
|
76 by simp |
|
77 |
|
78 lemma the_eqvt: |
|
79 assumes unique: "\<exists>!x. P x" |
|
80 shows "(p \<bullet> (THE x. P x)) = (THE x. p \<bullet> P (- p \<bullet> x))" |
|
81 apply(rule the1_equality [symmetric]) |
|
82 apply(simp add: ex1_eqvt2[symmetric]) |
|
83 apply(simp add: permute_bool_def unique) |
|
84 apply(simp add: permute_bool_def) |
|
85 apply(rule theI'[OF unique]) |
|
86 done |
|
87 |
|
88 section {* Set Operations *} |
|
89 |
|
90 lemma mem_permute_iff: |
|
91 shows "(p \<bullet> x) \<in> (p \<bullet> X) \<longleftrightarrow> x \<in> X" |
|
92 unfolding mem_def permute_fun_def permute_bool_def |
|
93 by simp |
|
94 |
|
95 lemma mem_eqvt: |
|
96 shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)" |
|
97 unfolding mem_permute_iff permute_bool_def by simp |
|
98 |
|
99 lemma not_mem_eqvt: |
|
100 shows "p \<bullet> (x \<notin> A) \<longleftrightarrow> (p \<bullet> x) \<notin> (p \<bullet> A)" |
|
101 unfolding mem_def permute_fun_def by (simp add: Not_eqvt) |
|
102 |
|
103 lemma Collect_eqvt: |
|
104 shows "p \<bullet> {x. P x} = {x. (p \<bullet> P) x}" |
|
105 unfolding Collect_def permute_fun_def .. |
|
106 |
|
107 lemma Collect_eqvt2: |
|
108 shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}" |
|
109 unfolding Collect_def permute_fun_def .. |
|
110 |
|
111 lemma empty_eqvt: |
|
112 shows "p \<bullet> {} = {}" |
|
113 unfolding empty_def Collect_eqvt2 False_eqvt .. |
|
114 |
|
115 lemma supp_set_empty: |
|
116 shows "supp {} = {}" |
|
117 by (simp add: supp_def empty_eqvt) |
|
118 |
|
119 lemma fresh_set_empty: |
|
120 shows "a \<sharp> {}" |
|
121 by (simp add: fresh_def supp_set_empty) |
|
122 |
|
123 lemma UNIV_eqvt: |
|
124 shows "p \<bullet> UNIV = UNIV" |
|
125 unfolding UNIV_def Collect_eqvt2 True_eqvt .. |
|
126 |
|
127 lemma union_eqvt: |
|
128 shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)" |
|
129 unfolding Un_def Collect_eqvt2 disj_eqvt mem_eqvt by simp |
|
130 |
|
131 lemma inter_eqvt: |
|
132 shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)" |
|
133 unfolding Int_def Collect_eqvt2 conj_eqvt mem_eqvt by simp |
|
134 |
|
135 lemma Diff_eqvt: |
|
136 fixes A B :: "'a::pt set" |
|
137 shows "p \<bullet> (A - B) = p \<bullet> A - p \<bullet> B" |
|
138 unfolding set_diff_eq Collect_eqvt2 conj_eqvt Not_eqvt mem_eqvt by simp |
|
139 |
|
140 lemma Compl_eqvt: |
|
141 fixes A :: "'a::pt set" |
|
142 shows "p \<bullet> (- A) = - (p \<bullet> A)" |
|
143 unfolding Compl_eq_Diff_UNIV Diff_eqvt UNIV_eqvt .. |
|
144 |
|
145 lemma insert_eqvt: |
|
146 shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)" |
|
147 unfolding permute_set_eq_image image_insert .. |
|
148 |
|
149 lemma vimage_eqvt: |
|
150 shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)" |
|
151 unfolding vimage_def permute_fun_def [where f=f] |
|
152 unfolding Collect_eqvt2 mem_eqvt .. |
|
153 |
|
154 lemma image_eqvt: |
|
155 shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)" |
|
156 unfolding permute_set_eq_image |
|
157 unfolding permute_fun_def [where f=f] |
|
158 by (simp add: image_image) |
|
159 |
|
160 lemma finite_permute_iff: |
|
161 shows "finite (p \<bullet> A) \<longleftrightarrow> finite A" |
|
162 unfolding permute_set_eq_vimage |
|
163 using bij_permute by (rule finite_vimage_iff) |
|
164 |
|
165 lemma finite_eqvt: |
|
166 shows "p \<bullet> finite A = finite (p \<bullet> A)" |
|
167 unfolding finite_permute_iff permute_bool_def .. |
|
168 |
|
169 |
|
170 section {* List Operations *} |
|
171 |
|
172 lemma append_eqvt: |
|
173 shows "p \<bullet> (xs @ ys) = (p \<bullet> xs) @ (p \<bullet> ys)" |
|
174 by (induct xs) auto |
|
175 |
|
176 lemma supp_append: |
|
177 shows "supp (xs @ ys) = supp xs \<union> supp ys" |
|
178 by (induct xs) (auto simp add: supp_Nil supp_Cons) |
|
179 |
|
180 lemma fresh_append: |
|
181 shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys" |
|
182 by (induct xs) (simp_all add: fresh_Nil fresh_Cons) |
|
183 |
|
184 lemma rev_eqvt: |
|
185 shows "p \<bullet> (rev xs) = rev (p \<bullet> xs)" |
|
186 by (induct xs) (simp_all add: append_eqvt) |
|
187 |
|
188 lemma supp_rev: |
|
189 shows "supp (rev xs) = supp xs" |
|
190 by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil) |
|
191 |
|
192 lemma fresh_rev: |
|
193 shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs" |
|
194 by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil) |
|
195 |
|
196 lemma set_eqvt: |
|
197 shows "p \<bullet> (set xs) = set (p \<bullet> xs)" |
|
198 by (induct xs) (simp_all add: empty_eqvt insert_eqvt) |
|
199 |
|
200 (* needs finite support premise |
|
201 lemma supp_set: |
|
202 fixes x :: "'a::pt" |
|
203 shows "supp (set xs) = supp xs" |
|
204 *) |
|
205 |
|
206 |
|
207 section {* Product Operations *} |
|
208 |
|
209 lemma fst_eqvt: |
|
210 "p \<bullet> (fst x) = fst (p \<bullet> x)" |
|
211 by (cases x) simp |
|
212 |
|
213 lemma snd_eqvt: |
|
214 "p \<bullet> (snd x) = snd (p \<bullet> x)" |
|
215 by (cases x) simp |
|
216 |
|
217 |
|
218 section {* Units *} |
|
219 |
|
220 lemma supp_unit: |
|
221 shows "supp () = {}" |
|
222 by (simp add: supp_def) |
|
223 |
|
224 lemma fresh_unit: |
|
225 shows "a \<sharp> ()" |
|
226 by (simp add: fresh_def supp_unit) |
|
227 |
|
228 section {* Equivariance automation *} |
|
229 |
|
230 text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_force} *} |
|
231 |
|
232 use "nominal_thmdecls.ML" |
|
233 setup "Nominal_ThmDecls.setup" |
|
234 |
|
235 lemmas [eqvt] = |
|
236 (* connectives *) |
|
237 eq_eqvt if_eqvt imp_eqvt disj_eqvt conj_eqvt Not_eqvt |
|
238 True_eqvt False_eqvt ex_eqvt all_eqvt ex1_eqvt |
|
239 imp_eqvt [folded induct_implies_def] |
|
240 |
|
241 (* nominal *) |
|
242 permute_eqvt supp_eqvt fresh_eqvt |
|
243 permute_pure |
|
244 |
|
245 (* datatypes *) |
|
246 permute_prod.simps append_eqvt rev_eqvt set_eqvt |
|
247 fst_eqvt snd_eqvt |
|
248 |
|
249 (* sets *) |
|
250 empty_eqvt UNIV_eqvt union_eqvt inter_eqvt mem_eqvt |
|
251 Diff_eqvt Compl_eqvt insert_eqvt Collect_eqvt |
|
252 |
|
253 thm eqvts |
|
254 thm eqvts_raw |
|
255 |
|
256 text {* helper lemmas for the eqvt_tac *} |
|
257 |
|
258 definition |
|
259 "unpermute p = permute (- p)" |
|
260 |
|
261 lemma eqvt_apply: |
|
262 fixes f :: "'a::pt \<Rightarrow> 'b::pt" |
|
263 and x :: "'a::pt" |
|
264 shows "p \<bullet> (f x) \<equiv> (p \<bullet> f) (p \<bullet> x)" |
|
265 unfolding permute_fun_def by simp |
|
266 |
|
267 lemma eqvt_lambda: |
|
268 fixes f :: "'a::pt \<Rightarrow> 'b::pt" |
|
269 shows "p \<bullet> (\<lambda>x. f x) \<equiv> (\<lambda>x. p \<bullet> (f (unpermute p x)))" |
|
270 unfolding permute_fun_def unpermute_def by simp |
|
271 |
|
272 lemma eqvt_bound: |
|
273 shows "p \<bullet> unpermute p x \<equiv> x" |
|
274 unfolding unpermute_def by simp |
|
275 |
|
276 use "nominal_permeq.ML" |
|
277 |
|
278 |
|
279 lemma "p \<bullet> (A \<longrightarrow> B = C)" |
|
280 apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
281 oops |
|
282 |
|
283 lemma "p \<bullet> (\<lambda>(x::'a::pt). A \<longrightarrow> (B::'a \<Rightarrow> bool) x = C) = foo" |
|
284 apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
285 oops |
|
286 |
|
287 lemma "p \<bullet> (\<lambda>x y. \<exists>z. x = z \<and> x = y \<longrightarrow> z \<noteq> x) = foo" |
|
288 apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
289 oops |
|
290 |
|
291 lemma "p \<bullet> (\<lambda>f x. f (g (f x))) = foo" |
|
292 apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
293 oops |
|
294 |
|
295 lemma "p \<bullet> (\<lambda>q. q \<bullet> (r \<bullet> x)) = foo" |
|
296 apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
297 oops |
|
298 |
|
299 lemma "p \<bullet> (q \<bullet> r \<bullet> x) = foo" |
|
300 apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
301 oops |
|
302 |
|
303 |
|
304 end |