Nominal/LFex.thy
changeset 1258 7d8949da7d99
parent 1250 d1ab27c10049
child 1259 db158e995bfc
equal deleted inserted replaced
1252:4b0563bc4b03 1258:7d8949da7d99
       
     1 theory LFex
       
     2 imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv" "Rsp"
       
     3 begin
       
     4 
       
     5 atom_decl name
       
     6 atom_decl ident
       
     7 
       
     8 datatype rkind =
       
     9     Type
       
    10   | KPi "rty" "name" "rkind"
       
    11 and rty =
       
    12     TConst "ident"
       
    13   | TApp "rty" "rtrm"
       
    14   | TPi "rty" "name" "rty"
       
    15 and rtrm =
       
    16     Const "ident"
       
    17   | Var "name"
       
    18   | App "rtrm" "rtrm"
       
    19   | Lam "rty" "name" "rtrm"
       
    20 
       
    21 
       
    22 setup {* snd o define_raw_perms ["rkind", "rty", "rtrm"] ["LFex.rkind", "LFex.rty", "LFex.rtrm"] *}
       
    23 
       
    24 local_setup {*
       
    25   snd o define_fv_alpha "LFex.rkind"
       
    26   [[ [], [[], [(NONE, 1)], [(NONE, 1)]] ],
       
    27    [ [[]], [[], []], [[], [(NONE, 1)], [(NONE, 1)]] ],
       
    28    [ [[]], [[]], [[], []], [[], [(NONE, 1)], [(NONE, 1)]]]] *}
       
    29 notation
       
    30     alpha_rkind  ("_ \<approx>ki _" [100, 100] 100)
       
    31 and alpha_rty    ("_ \<approx>ty _" [100, 100] 100)
       
    32 and alpha_rtrm   ("_ \<approx>tr _" [100, 100] 100)
       
    33 thm fv_rkind_fv_rty_fv_rtrm.simps alpha_rkind_alpha_rty_alpha_rtrm.intros
       
    34 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha_rkind_alpha_rty_alpha_rtrm_inj}, []), (build_alpha_inj @{thms alpha_rkind_alpha_rty_alpha_rtrm.intros} @{thms rkind.distinct rty.distinct rtrm.distinct rkind.inject rty.inject rtrm.inject} @{thms alpha_rkind.cases alpha_rty.cases alpha_rtrm.cases} ctxt)) ctxt)) *}
       
    35 thm alpha_rkind_alpha_rty_alpha_rtrm_inj
       
    36 
       
    37 lemma rfv_eqvt[eqvt]:
       
    38   "((pi\<bullet>fv_rkind t1) = fv_rkind (pi\<bullet>t1))"
       
    39   "((pi\<bullet>fv_rty t2) = fv_rty (pi\<bullet>t2))"
       
    40   "((pi\<bullet>fv_rtrm t3) = fv_rtrm (pi\<bullet>t3))"
       
    41 apply(induct t1 and t2 and t3 rule: rkind_rty_rtrm.inducts)
       
    42 apply(simp_all add: union_eqvt Diff_eqvt)
       
    43 apply(simp_all add: permute_set_eq atom_eqvt)
       
    44 done
       
    45 
       
    46 lemma alpha_eqvt:
       
    47   "t1 \<approx>ki s1 \<Longrightarrow> (pi \<bullet> t1) \<approx>ki (pi \<bullet> s1)"
       
    48   "t2 \<approx>ty s2 \<Longrightarrow> (pi \<bullet> t2) \<approx>ty (pi \<bullet> s2)"
       
    49   "t3 \<approx>tr s3 \<Longrightarrow> (pi \<bullet> t3) \<approx>tr (pi \<bullet> s3)"
       
    50 apply(induct rule: alpha_rkind_alpha_rty_alpha_rtrm.inducts)
       
    51 apply (simp_all add: alpha_rkind_alpha_rty_alpha_rtrm.intros)
       
    52 apply (simp_all add: alpha_rkind_alpha_rty_alpha_rtrm_inj)
       
    53 apply (rule alpha_gen_atom_eqvt)
       
    54 apply (simp add: rfv_eqvt)
       
    55 apply assumption
       
    56 apply (rule alpha_gen_atom_eqvt)
       
    57 apply (simp add: rfv_eqvt)
       
    58 apply assumption
       
    59 apply (rule alpha_gen_atom_eqvt)
       
    60 apply (simp add: rfv_eqvt)
       
    61 apply assumption
       
    62 done
       
    63 
       
    64 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha_equivps}, []),
       
    65   (build_equivps [@{term alpha_rkind}, @{term alpha_rty}, @{term alpha_rtrm}]
       
    66      @{thm rkind_rty_rtrm.induct} @{thm alpha_rkind_alpha_rty_alpha_rtrm.induct} 
       
    67      @{thms rkind.inject rty.inject rtrm.inject} @{thms alpha_rkind_alpha_rty_alpha_rtrm_inj}
       
    68      @{thms rkind.distinct rty.distinct rtrm.distinct}
       
    69      @{thms alpha_rkind.cases alpha_rty.cases alpha_rtrm.cases}
       
    70      @{thms alpha_eqvt} ctxt)) ctxt)) *}
       
    71 thm alpha_equivps
       
    72 
       
    73 local_setup  {* define_quotient_type
       
    74   [(([], @{binding kind}, NoSyn), (@{typ rkind}, @{term alpha_rkind})),
       
    75    (([], @{binding ty},   NoSyn), (@{typ rty},   @{term alpha_rty}  )),
       
    76    (([], @{binding trm},  NoSyn), (@{typ rtrm},  @{term alpha_rtrm} ))]
       
    77   (ALLGOALS (resolve_tac @{thms alpha_equivps}))
       
    78 *}
       
    79 
       
    80 local_setup {*
       
    81 (fn ctxt => ctxt
       
    82  |> snd o (Quotient_Def.quotient_lift_const ("TYP", @{term Type}))
       
    83  |> snd o (Quotient_Def.quotient_lift_const ("KPI", @{term KPi}))
       
    84  |> snd o (Quotient_Def.quotient_lift_const ("TCONST", @{term TConst}))
       
    85  |> snd o (Quotient_Def.quotient_lift_const ("TAPP", @{term TApp}))
       
    86  |> snd o (Quotient_Def.quotient_lift_const ("TPI", @{term TPi}))
       
    87  |> snd o (Quotient_Def.quotient_lift_const ("CONS", @{term Const}))
       
    88  |> snd o (Quotient_Def.quotient_lift_const ("VAR", @{term Var}))
       
    89  |> snd o (Quotient_Def.quotient_lift_const ("APP", @{term App}))
       
    90  |> snd o (Quotient_Def.quotient_lift_const ("LAM", @{term Lam}))
       
    91  |> snd o (Quotient_Def.quotient_lift_const ("fv_kind", @{term fv_rkind}))
       
    92  |> snd o (Quotient_Def.quotient_lift_const ("fv_ty", @{term fv_rty}))
       
    93  |> snd o (Quotient_Def.quotient_lift_const ("fv_trm", @{term fv_rtrm}))) *}
       
    94 print_theorems
       
    95 
       
    96 local_setup {* prove_const_rsp @{binding rfv_rsp} [@{term fv_rkind}, @{term fv_rty}, @{term fv_rtrm}]
       
    97   (fn _ => fvbv_rsp_tac @{thm alpha_rkind_alpha_rty_alpha_rtrm.induct} @{thms fv_rkind_fv_rty_fv_rtrm.simps} 1) *}
       
    98 local_setup {* prove_const_rsp Binding.empty [@{term "permute :: perm \<Rightarrow> rkind \<Rightarrow> rkind"}]
       
    99   (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha_eqvt}) 1) *}
       
   100 local_setup {* prove_const_rsp Binding.empty [@{term "permute :: perm \<Rightarrow> rty \<Rightarrow> rty"}]
       
   101   (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha_eqvt}) 1) *}
       
   102 local_setup {* prove_const_rsp Binding.empty [@{term "permute :: perm \<Rightarrow> rtrm \<Rightarrow> rtrm"}]
       
   103   (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha_eqvt}) 1) *}
       
   104 ML {* fun const_rsp_tac _ = constr_rsp_tac @{thms alpha_rkind_alpha_rty_alpha_rtrm_inj}
       
   105   @{thms rfv_rsp} @{thms alpha_equivps} 1 *}
       
   106 local_setup {* prove_const_rsp Binding.empty [@{term TConst}] const_rsp_tac *}
       
   107 local_setup {* prove_const_rsp Binding.empty [@{term TApp}] const_rsp_tac *}
       
   108 local_setup {* prove_const_rsp Binding.empty [@{term Var}] const_rsp_tac *}
       
   109 local_setup {* prove_const_rsp Binding.empty [@{term App}] const_rsp_tac *}
       
   110 local_setup {* prove_const_rsp Binding.empty [@{term Const}] const_rsp_tac *}
       
   111 local_setup {* prove_const_rsp Binding.empty [@{term KPi}] const_rsp_tac *}
       
   112 local_setup {* prove_const_rsp Binding.empty [@{term TPi}] const_rsp_tac *}
       
   113 local_setup {* prove_const_rsp Binding.empty [@{term Lam}] const_rsp_tac *}
       
   114 
       
   115 lemmas kind_ty_trm_induct = rkind_rty_rtrm.induct[quot_lifted]
       
   116 
       
   117 thm rkind_rty_rtrm.inducts
       
   118 lemmas kind_ty_trm_inducts = rkind_rty_rtrm.inducts[quot_lifted]
       
   119 
       
   120 instantiation kind and ty and trm :: pt
       
   121 begin
       
   122 
       
   123 quotient_definition
       
   124   "permute_kind :: perm \<Rightarrow> kind \<Rightarrow> kind"
       
   125 is
       
   126   "permute :: perm \<Rightarrow> rkind \<Rightarrow> rkind"
       
   127 
       
   128 quotient_definition
       
   129   "permute_ty :: perm \<Rightarrow> ty \<Rightarrow> ty"
       
   130 is
       
   131   "permute :: perm \<Rightarrow> rty \<Rightarrow> rty"
       
   132 
       
   133 quotient_definition
       
   134   "permute_trm :: perm \<Rightarrow> trm \<Rightarrow> trm"
       
   135 is
       
   136   "permute :: perm \<Rightarrow> rtrm \<Rightarrow> rtrm"
       
   137 
       
   138 instance by default (simp_all add:
       
   139   permute_rkind_permute_rty_permute_rtrm_zero[quot_lifted]
       
   140   permute_rkind_permute_rty_permute_rtrm_append[quot_lifted])
       
   141 
       
   142 end
       
   143 
       
   144 (*
       
   145 Lifts, but slow and not needed?.
       
   146 lemmas alpha_kind_alpha_ty_alpha_trm_induct = alpha_rkind_alpha_rty_alpha_rtrm.induct[unfolded alpha_gen, quot_lifted, folded alpha_gen]
       
   147 *)
       
   148 
       
   149 lemmas permute_ktt[simp] = permute_rkind_permute_rty_permute_rtrm.simps[quot_lifted]
       
   150 
       
   151 lemmas kind_ty_trm_inj = alpha_rkind_alpha_rty_alpha_rtrm_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]
       
   152 
       
   153 lemmas fv_kind_ty_trm = fv_rkind_fv_rty_fv_rtrm.simps[quot_lifted]
       
   154 
       
   155 lemmas fv_eqvt = rfv_eqvt[quot_lifted]
       
   156 
       
   157 lemma supports:
       
   158   "{} supports TYP"
       
   159   "(supp (atom i)) supports (TCONST i)"
       
   160   "(supp A \<union> supp M) supports (TAPP A M)"
       
   161   "(supp (atom i)) supports (CONS i)"
       
   162   "(supp (atom x)) supports (VAR x)"
       
   163   "(supp M \<union> supp N) supports (APP M N)"
       
   164   "(supp ty \<union> supp (atom na) \<union> supp ki) supports (KPI ty na ki)"
       
   165   "(supp ty \<union> supp (atom na) \<union> supp ty2) supports (TPI ty na ty2)"
       
   166   "(supp ty \<union> supp (atom na) \<union> supp trm) supports (LAM ty na trm)"
       
   167 apply(simp_all add: supports_def fresh_def[symmetric] swap_fresh_fresh)
       
   168 apply(rule_tac [!] allI)+
       
   169 apply(rule_tac [!] impI)
       
   170 apply(tactic {* ALLGOALS (REPEAT o etac conjE) *})
       
   171 apply(simp_all add: fresh_atom)
       
   172 done
       
   173 
       
   174 lemma kind_ty_trm_fs:
       
   175   "finite (supp (x\<Colon>kind))"
       
   176   "finite (supp (y\<Colon>ty))"
       
   177   "finite (supp (z\<Colon>trm))"
       
   178 apply(induct x and y and z rule: kind_ty_trm_inducts)
       
   179 apply(tactic {* ALLGOALS (rtac @{thm supports_finite} THEN' resolve_tac @{thms supports}) *})
       
   180 apply(simp_all add: supp_atom)
       
   181 done
       
   182 
       
   183 instance kind and ty and trm :: fs
       
   184 apply(default)
       
   185 apply(simp_all only: kind_ty_trm_fs)
       
   186 done
       
   187 
       
   188 lemma supp_eqs:
       
   189   "supp TYP = {}"
       
   190   "supp rkind = fv_kind rkind \<Longrightarrow> supp (KPI rty name rkind) = supp rty \<union> supp (Abs {atom name} rkind)"
       
   191   "supp (TCONST i) = {atom i}"
       
   192   "supp (TAPP A M) = supp A \<union> supp M"
       
   193   "supp rty2 = fv_ty rty2 \<Longrightarrow> supp (TPI rty1 name rty2) = supp rty1 \<union> supp (Abs {atom name} rty2)"
       
   194   "supp (CONS i) = {atom i}"
       
   195   "supp (VAR x) = {atom x}"
       
   196   "supp (APP M N) = supp M \<union> supp N"
       
   197   "supp rtrm = fv_trm rtrm \<Longrightarrow> supp (LAM rty name rtrm) = supp rty \<union> supp (Abs {atom name} rtrm)"
       
   198   apply(simp_all (no_asm) add: supp_def)
       
   199   apply(simp_all only: kind_ty_trm_inj Abs_eq_iff alpha_gen)
       
   200   apply(simp_all only: insert_eqvt empty_eqvt atom_eqvt supp_eqvt[symmetric] fv_eqvt[symmetric])
       
   201   apply(simp_all add: Collect_imp_eq Collect_neg_eq[symmetric] Set.Un_commute)
       
   202   apply(simp_all add: supp_at_base[simplified supp_def])
       
   203   done
       
   204 
       
   205 lemma supp_fv:
       
   206   "supp t1 = fv_kind t1"
       
   207   "supp t2 = fv_ty t2"
       
   208   "supp t3 = fv_trm t3"
       
   209   apply(induct t1 and t2 and t3 rule: kind_ty_trm_inducts)
       
   210   apply(simp_all (no_asm) only: supp_eqs fv_kind_ty_trm)
       
   211   apply(simp_all)
       
   212   apply(subst supp_eqs)
       
   213   apply(simp_all add: supp_Abs)
       
   214   apply(subst supp_eqs)
       
   215   apply(simp_all add: supp_Abs)
       
   216   apply(subst supp_eqs)
       
   217   apply(simp_all add: supp_Abs)
       
   218   done
       
   219 
       
   220 lemma supp_rkind_rty_rtrm:
       
   221   "supp TYP = {}"
       
   222   "supp (KPI A x K) = supp A \<union> (supp K - {atom x})"
       
   223   "supp (TCONST i) = {atom i}"
       
   224   "supp (TAPP A M) = supp A \<union> supp M"
       
   225   "supp (TPI A x B) = supp A \<union> (supp B - {atom x})"
       
   226   "supp (CONS i) = {atom i}"
       
   227   "supp (VAR x) = {atom x}"
       
   228   "supp (APP M N) = supp M \<union> supp N"
       
   229   "supp (LAM A x M) = supp A \<union> (supp M - {atom x})"
       
   230   by (simp_all only: supp_fv fv_kind_ty_trm)
       
   231 
       
   232 end
       
   233 
       
   234 
       
   235 
       
   236