Quot/Examples/SigmaEx.thy
changeset 918 7be9b054f672
parent 914 b8e43414c5aa
child 938 0ff855a6ffb7
equal deleted inserted replaced
917:2cb5745f403e 918:7be9b054f672
   111   "_expttrn"        :: "pttrn => bool => bool"      ("(3\<exists>\<exists> _./ _)" [0, 10] 10)
   111   "_expttrn"        :: "pttrn => bool => bool"      ("(3\<exists>\<exists> _./ _)" [0, 10] 10)
   112 
   112 
   113 translations
   113 translations
   114   "\<exists>\<exists> x. P"   == "Ex (%x. P)"
   114   "\<exists>\<exists> x. P"   == "Ex (%x. P)"
   115 
   115 
   116 lemma split_rsp[quot_respect]: "((R1 ===> R2 ===> op =) ===> (prod_rel R1 R2) ===> op =) split split"
   116 lemma split_rsp[quot_respect]: 
       
   117   "((R1 ===> R2 ===> op =) ===> (prod_rel R1 R2) ===> op =) split split"
   117 by auto
   118 by auto
   118 
   119 
   119 lemma rvar_rsp[quot_respect]: "(op = ===> alpha_obj) rVar rVar"
   120 lemma rvar_rsp[quot_respect]: "(op = ===> alpha_obj) rVar rVar"
   120 by (simp add: a1)
   121 by (simp add: a1)
   121 
   122 
   127 sorry
   128 sorry
   128 lemma rsig_rsp[quot_respect]: "(op = ===> alpha_obj ===> alpha_method) rSig rSig"
   129 lemma rsig_rsp[quot_respect]: "(op = ===> alpha_obj ===> alpha_method) rSig rSig"
   129 sorry
   130 sorry
   130 lemma operm_rsp[quot_respect]: "(op = ===> alpha_obj ===> alpha_obj) op \<bullet> op \<bullet>"
   131 lemma operm_rsp[quot_respect]: "(op = ===> alpha_obj ===> alpha_obj) op \<bullet> op \<bullet>"
   131 sorry
   132 sorry
       
   133 
       
   134   
   132 
   135 
   133 lemma liftd: "
   136 lemma liftd: "
   134 \<exists>\<exists>(hom_o, (hom_d, (hom_e, hom_m))).
   137 \<exists>\<exists>(hom_o, (hom_d, (hom_e, hom_m))).
   135 (
   138 (
   136  (\<forall>x. hom_o (Var x) = fvar x) \<and>
   139  (\<forall>x. hom_o (Var x) = fvar x) \<and>