equal
deleted
inserted
replaced
793 by (perm_simp) (rule refl) |
793 by (perm_simp) (rule refl) |
794 |
794 |
795 lemma if_eqvt [eqvt]: |
795 lemma if_eqvt [eqvt]: |
796 shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)" |
796 shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)" |
797 by (simp add: permute_fun_def permute_bool_def) |
797 by (simp add: permute_fun_def permute_bool_def) |
|
798 |
|
799 lemma Let_eqvt [eqvt]: |
|
800 shows "p \<bullet> Let x y = Let (p \<bullet> x) (p \<bullet> y)" |
|
801 unfolding Let_def permute_fun_app_eq .. |
798 |
802 |
799 lemma True_eqvt [eqvt]: |
803 lemma True_eqvt [eqvt]: |
800 shows "p \<bullet> True = True" |
804 shows "p \<bullet> True = True" |
801 unfolding permute_bool_def .. |
805 unfolding permute_bool_def .. |
802 |
806 |