equal
deleted
inserted
replaced
873 by (perm_simp) (rule refl) |
873 by (perm_simp) (rule refl) |
874 |
874 |
875 lemma if_eqvt [eqvt]: |
875 lemma if_eqvt [eqvt]: |
876 shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)" |
876 shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)" |
877 by (simp add: permute_fun_def permute_bool_def) |
877 by (simp add: permute_fun_def permute_bool_def) |
|
878 |
|
879 lemma Let_eqvt [eqvt]: |
|
880 shows "p \<bullet> Let x y = Let (p \<bullet> x) (p \<bullet> y)" |
|
881 unfolding Let_def permute_fun_app_eq .. |
878 |
882 |
879 lemma True_eqvt [eqvt]: |
883 lemma True_eqvt [eqvt]: |
880 shows "p \<bullet> True = True" |
884 shows "p \<bullet> True = True" |
881 unfolding permute_bool_def .. |
885 unfolding permute_bool_def .. |
882 |
886 |