Nominal/Ex/SingleLet.thy
changeset 2468 7b1470b55936
parent 2464 f4eba60cbd69
child 2473 a3711f07449b
equal deleted inserted replaced
2467:67b3933c3190 2468:7b1470b55936
    31 thm single_let.eq_iff
    31 thm single_let.eq_iff
    32 thm single_let.fv_bn_eqvt
    32 thm single_let.fv_bn_eqvt
    33 thm single_let.size_eqvt
    33 thm single_let.size_eqvt
    34 thm single_let.supports
    34 thm single_let.supports
    35 thm single_let.fsupp
    35 thm single_let.fsupp
    36 
       
    37 lemma Abs_eq_iff:
       
    38   shows "Abs bs x = Abs cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op =) supp p (cs, y))"
       
    39   and   "Abs_res bs x = Abs_res cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>res (op =) supp p (cs, y))"
       
    40   and   "Abs_lst bsl x = Abs_lst csl y \<longleftrightarrow> (\<exists>p. (bsl, x) \<approx>lst (op =) supp p (csl, y))"
       
    41   by (lifting alphas_abs)
       
    42 
    36 
    43 lemma test2:
    37 lemma test2:
    44   assumes "fv_trm t = supp t" 
    38   assumes "fv_trm t = supp t" 
    45   shows "\<forall>p. fv_trm (p \<bullet> t) = supp (p \<bullet> t)"
    39   shows "\<forall>p. fv_trm (p \<bullet> t) = supp (p \<bullet> t)"
    46 apply(rule allI)
    40 apply(rule allI)