Nominal/Ex/Lambda.thy
changeset 1800 78fdc6b36a1c
parent 1797 fddb470720f1
child 1805 f187f20f0a79
equal deleted inserted replaced
1799:6471e252f14e 1800:78fdc6b36a1c
     2 imports "../Parser"
     2 imports "../Parser"
     3 begin
     3 begin
     4 
     4 
     5 atom_decl name
     5 atom_decl name
     6 
     6 
     7 nominal_datatype lm =
     7 nominal_datatype lam =
     8   Vr "name"
     8   Var "name"
     9 | Ap "lm" "lm"
     9 | App "lam" "lam"
    10 | Lm x::"name" l::"lm"  bind x in l
    10 | Lam x::"name" l::"lam"  bind x in l
    11 
    11 
    12 lemmas supp_fn' = lm.fv[simplified lm.supp]
    12 lemmas supp_fn' = lam.fv[simplified lam.supp]
       
    13 
       
    14 section {* Strong Induction Principles*}
    13 
    15 
    14 (* 
    16 (* 
    15   Old way of establishing strong induction
    17   Old way of establishing strong induction
    16   principles by chosing a fresh name.
    18   principles by chosing a fresh name.
    17 *)
    19 *)
    18 lemma
    20 lemma
    19   fixes c::"'a::fs"
    21   fixes c::"'a::fs"
    20   assumes a1: "\<And>name c. P c (Vr name)"
    22   assumes a1: "\<And>name c. P c (Var name)"
    21   and     a2: "\<And>lm1 lm2 c. \<lbrakk>\<And>d. P d lm1; \<And>d. P d lm2\<rbrakk> \<Longrightarrow> P c (Ap lm1 lm2)"
    23   and     a2: "\<And>lam1 lam2 c. \<lbrakk>\<And>d. P d lam1; \<And>d. P d lam2\<rbrakk> \<Longrightarrow> P c (App lam1 lam2)"
    22   and     a3: "\<And>name lm c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lm\<rbrakk> \<Longrightarrow> P c (Lm name lm)"
    24   and     a3: "\<And>name lam c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lam\<rbrakk> \<Longrightarrow> P c (Lam name lam)"
    23   shows "P c lm"
    25   shows "P c lam"
    24 proof -
    26 proof -
    25   have "\<And>p. P c (p \<bullet> lm)"
    27   have "\<And>p. P c (p \<bullet> lam)"
    26     apply(induct lm arbitrary: c rule: lm.induct)
    28     apply(induct lam arbitrary: c rule: lam.induct)
    27     apply(simp only: lm.perm)
    29     apply(simp only: lam.perm)
    28     apply(rule a1)
    30     apply(rule a1)
    29     apply(simp only: lm.perm)
    31     apply(simp only: lam.perm)
    30     apply(rule a2)
    32     apply(rule a2)
    31     apply(assumption)
    33     apply(assumption)
    32     apply(assumption)
    34     apply(assumption)
    33     apply(subgoal_tac "\<exists>new::name. (atom new) \<sharp> (c, Lm (p \<bullet> name) (p \<bullet> lm))")
    35     apply(subgoal_tac "\<exists>new::name. (atom new) \<sharp> (c, Lam (p \<bullet> name) (p \<bullet> lam))")
    34     defer
    36     defer
    35     apply(simp add: fresh_def)
    37     apply(simp add: fresh_def)
    36     apply(rule_tac X="supp (c, Lm (p \<bullet> name) (p \<bullet> lm))" in obtain_at_base)
    38     apply(rule_tac X="supp (c, Lam (p \<bullet> name) (p \<bullet> lam))" in obtain_at_base)
    37     apply(simp add: supp_Pair finite_supp)
    39     apply(simp add: supp_Pair finite_supp)
    38     apply(blast)
    40     apply(blast)
    39     apply(erule exE)
    41     apply(erule exE)
    40     apply(rule_tac t="p \<bullet> Lm name lm" and 
    42     apply(rule_tac t="p \<bullet> Lam name lam" and 
    41                    s="(((p \<bullet> name) \<leftrightarrow> new) + p) \<bullet> Lm name lm" in subst)
    43                    s="(((p \<bullet> name) \<leftrightarrow> new) + p) \<bullet> Lam name lam" in subst)
    42     apply(simp del: lm.perm)
    44     apply(simp del: lam.perm)
    43     apply(subst lm.perm)
    45     apply(subst lam.perm)
    44     apply(subst (2) lm.perm)
    46     apply(subst (2) lam.perm)
    45     apply(rule flip_fresh_fresh)
    47     apply(rule flip_fresh_fresh)
    46     apply(simp add: fresh_def)
    48     apply(simp add: fresh_def)
    47     apply(simp only: supp_fn')
    49     apply(simp only: supp_fn')
    48     apply(simp)
    50     apply(simp)
    49     apply(simp add: fresh_Pair)
    51     apply(simp add: fresh_Pair)
    51     apply(rule a3)
    53     apply(rule a3)
    52     apply(simp add: fresh_Pair)
    54     apply(simp add: fresh_Pair)
    53     apply(drule_tac x="((p \<bullet> name) \<leftrightarrow> new) + p" in meta_spec)
    55     apply(drule_tac x="((p \<bullet> name) \<leftrightarrow> new) + p" in meta_spec)
    54     apply(simp)
    56     apply(simp)
    55     done
    57     done
    56   then have "P c (0 \<bullet> lm)" by blast
    58   then have "P c (0 \<bullet> lam)" by blast
    57   then show "P c lm" by simp
    59   then show "P c lam" by simp
    58 qed
    60 qed
    59 
    61 
    60 (* 
    62 (* 
    61   New way of establishing strong induction
    63   New way of establishing strong induction
    62   principles by using a appropriate permutation.
    64   principles by using a appropriate permutation.
    63 *)
    65 *)
    64 lemma
    66 lemma
    65   fixes c::"'a::fs"
    67   fixes c::"'a::fs"
    66   assumes a1: "\<And>name c. P c (Vr name)"
    68   assumes a1: "\<And>name c. P c (Var name)"
    67   and     a2: "\<And>lm1 lm2 c. \<lbrakk>\<And>d. P d lm1; \<And>d. P d lm2\<rbrakk> \<Longrightarrow> P c (Ap lm1 lm2)"
    69   and     a2: "\<And>lam1 lam2 c. \<lbrakk>\<And>d. P d lam1; \<And>d. P d lam2\<rbrakk> \<Longrightarrow> P c (App lam1 lam2)"
    68   and     a3: "\<And>name lm c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lm\<rbrakk> \<Longrightarrow> P c (Lm name lm)"
    70   and     a3: "\<And>name lam c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lam\<rbrakk> \<Longrightarrow> P c (Lam name lam)"
    69   shows "P c lm"
    71   shows "P c lam"
    70 proof -
    72 proof -
    71   have "\<And>p. P c (p \<bullet> lm)"
    73   have "\<And>p. P c (p \<bullet> lam)"
    72     apply(induct lm arbitrary: c rule: lm.induct)
    74     apply(induct lam arbitrary: c rule: lam.induct)
    73     apply(simp only: lm.perm)
    75     apply(simp only: lam.perm)
    74     apply(rule a1)
    76     apply(rule a1)
    75     apply(simp only: lm.perm)
    77     apply(simp only: lam.perm)
    76     apply(rule a2)
    78     apply(rule a2)
    77     apply(assumption)
    79     apply(assumption)
    78     apply(assumption)
    80     apply(assumption)
    79     apply(subgoal_tac "\<exists>q. (q \<bullet> {p \<bullet> atom name}) \<sharp>* c \<and> supp (p \<bullet> Lm name lm) \<sharp>* q")
    81     apply(subgoal_tac "\<exists>q. (q \<bullet> {p \<bullet> atom name}) \<sharp>* c \<and> supp (p \<bullet> Lam name lam) \<sharp>* q")
    80     apply(erule exE)
    82     apply(erule exE)
    81     apply(rule_tac t="p \<bullet> Lm name lm" and 
    83     apply(rule_tac t="p \<bullet> Lam name lam" and 
    82                    s="q \<bullet> p \<bullet> Lm name lm" in subst)
    84                    s="q \<bullet> p \<bullet> Lam name lam" in subst)
    83     defer
    85     defer
    84     apply(simp add: lm.perm)
    86     apply(simp add: lam.perm)
    85     apply(rule a3)
    87     apply(rule a3)
    86     apply(simp add: eqvts fresh_star_def)
    88     apply(simp add: eqvts fresh_star_def)
    87     apply(drule_tac x="q + p" in meta_spec)
    89     apply(drule_tac x="q + p" in meta_spec)
    88     apply(simp)
    90     apply(simp)
    89     apply(rule at_set_avoiding2)
    91     apply(rule at_set_avoiding2)
    90     apply(simp add: finite_supp)
    92     apply(simp add: finite_supp)
    91     apply(simp add: finite_supp)
    93     apply(simp add: finite_supp)
    92     apply(simp add: finite_supp)
    94     apply(simp add: finite_supp)
    93     apply(simp only: lm.perm atom_eqvt)
    95     apply(simp only: lam.perm atom_eqvt)
    94     apply(simp add: fresh_star_def fresh_def supp_fn')
    96     apply(simp add: fresh_star_def fresh_def supp_fn')
    95     apply(rule supp_perm_eq)
    97     apply(rule supp_perm_eq)
    96     apply(simp)
    98     apply(simp)
    97     done
    99     done
    98   then have "P c (0 \<bullet> lm)" by blast
   100   then have "P c (0 \<bullet> lam)" by blast
    99   then show "P c lm" by simp
   101   then show "P c lam" by simp
   100 qed
   102 qed
   101 
   103 
       
   104 section {* size function *}
       
   105 
       
   106 lemma size_eqvt_raw:
       
   107   fixes t::"lam_raw"
       
   108   shows "size (pi \<bullet> t)  = size t"
       
   109   apply (induct rule: lam_raw.inducts)
       
   110   apply simp_all
       
   111   done
       
   112 
       
   113 instantiation lam :: size 
       
   114 begin
       
   115 
       
   116 quotient_definition
       
   117   "size_lam :: lam \<Rightarrow> nat"
       
   118 is
       
   119   "size :: lam_raw \<Rightarrow> nat"
       
   120 
       
   121 lemma size_rsp:
       
   122   "alpha_lam_raw x y \<Longrightarrow> size x = size y"
       
   123   apply (induct rule: alpha_lam_raw.inducts)
       
   124   apply (simp_all only: lam_raw.size)
       
   125   apply (simp_all only: alphas)
       
   126   apply clarify
       
   127   apply (simp_all only: size_eqvt_raw)
       
   128   done
       
   129 
       
   130 lemma [quot_respect]:
       
   131   "(alpha_lam_raw ===> op =) size size"
       
   132   by (simp_all add: size_rsp)
       
   133 
       
   134 lemma [quot_preserve]:
       
   135   "(rep_lam ---> id) size = size"
       
   136   by (simp_all add: size_lam_def)
       
   137 
       
   138 instance
       
   139   by default
       
   140 
   102 end
   141 end
   103 
   142 
   104 
   143 lemmas size_lam[simp] = 
   105 
   144   lam_raw.size(4)[quot_lifted]
       
   145   lam_raw.size(5)[quot_lifted]
       
   146   lam_raw.size(6)[quot_lifted]
       
   147 
       
   148 (* is this needed? *)
       
   149 lemma [measure_function]: 
       
   150   "is_measure (size::lam\<Rightarrow>nat)" 
       
   151   by (rule is_measure_trivial)
       
   152 
       
   153 section {* Matching *}
       
   154 
       
   155 definition
       
   156   MATCH :: "('c::pt \<Rightarrow> (bool * 'a::pt * 'b::pt)) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b"
       
   157 where
       
   158   "MATCH M d x \<equiv> if (\<exists>!r. \<exists>q. M q = (True, x, r)) then (THE r. \<exists>q. M q = (True, x, r)) else d"
       
   159 
       
   160 (*
       
   161 lemma MATCH_eqvt:
       
   162   shows "p \<bullet> (MATCH M d x) = MATCH (p \<bullet> M) (p \<bullet> d) (p \<bullet> x)"
       
   163 unfolding MATCH_def
       
   164 apply(perm_simp the_eqvt)
       
   165 apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
       
   166 apply(simp)
       
   167 thm eqvts_raw 
       
   168 apply(subst if_eqvt)
       
   169 apply(subst ex1_eqvt)
       
   170 apply(subst permute_fun_def)
       
   171 apply(subst ex_eqvt)
       
   172 apply(subst permute_fun_def)
       
   173 apply(subst eq_eqvt)
       
   174 apply(subst permute_fun_app_eq[where f="M"])
       
   175 apply(simp only: permute_minus_cancel)
       
   176 apply(subst permute_prod.simps)
       
   177 apply(subst permute_prod.simps)
       
   178 apply(simp only: permute_minus_cancel)
       
   179 apply(simp only: permute_bool_def)
       
   180 apply(simp)
       
   181 apply(subst ex1_eqvt)
       
   182 apply(subst permute_fun_def)
       
   183 apply(subst ex_eqvt)
       
   184 apply(subst permute_fun_def)
       
   185 apply(subst eq_eqvt)
       
   186 
       
   187 apply(simp only: eqvts)
       
   188 apply(simp)
       
   189 apply(subgoal_tac "(p \<bullet> (\<exists>!r. \<exists>q. M q = (True, x, r))) = (\<exists>!r. \<exists>q. (p \<bullet> M) q = (True, p \<bullet> x, r))")
       
   190 apply(drule sym)
       
   191 apply(simp)
       
   192 apply(rule impI)
       
   193 apply(simp add: perm_bool)
       
   194 apply(rule trans)
       
   195 apply(rule pt_the_eqvt[OF pta at])
       
   196 apply(assumption)
       
   197 apply(simp add: pt_ex_eqvt[OF pt at])
       
   198 apply(simp add: pt_eq_eqvt[OF ptb at])
       
   199 apply(rule cheat)
       
   200 apply(rule trans)
       
   201 apply(rule pt_ex1_eqvt)
       
   202 apply(rule pta)
       
   203 apply(rule at)
       
   204 apply(simp add: pt_ex_eqvt[OF pt at])
       
   205 apply(simp add: pt_eq_eqvt[OF ptb at])
       
   206 apply(subst pt_pi_rev[OF pta at])
       
   207 apply(subst pt_fun_app_eq[OF pt at])
       
   208 apply(subst pt_pi_rev[OF pt at])
       
   209 apply(simp)
       
   210 done
       
   211 
       
   212 lemma MATCH_cng:
       
   213   assumes a: "M1 = M2" "d1 = d2"
       
   214   shows "MATCH M1 d1 x = MATCH M2 d2 x"
       
   215 using a by simp
       
   216 
       
   217 lemma MATCH_eq:
       
   218   assumes a: "t = l x" "G x" "\<And>x'. t = l x' \<Longrightarrow> G x' \<Longrightarrow> r x' = r x"
       
   219   shows "MATCH (\<lambda>x. (G x, l x, r x)) d t = r x"
       
   220 using a
       
   221 unfolding MATCH_def
       
   222 apply(subst if_P)
       
   223 apply(rule_tac a="r x" in ex1I)
       
   224 apply(rule_tac x="x" in exI)
       
   225 apply(blast)
       
   226 apply(erule exE)
       
   227 apply(drule_tac x="q" in meta_spec)
       
   228 apply(auto)[1]
       
   229 apply(rule the_equality)
       
   230 apply(blast)
       
   231 apply(erule exE)
       
   232 apply(drule_tac x="q" in meta_spec)
       
   233 apply(auto)[1]
       
   234 done
       
   235 
       
   236 lemma MATCH_eq2:
       
   237   assumes a: "t = l x1 x2" "G x1 x2" "\<And>x1' x2'. t = l x1' x2' \<Longrightarrow> G x1' x2' \<Longrightarrow> r x1' x2' = r x1 x2"
       
   238   shows "MATCH (\<lambda>(x1,x2). (G x1 x2, l x1 x2, r x1 x2)) d t = r x1 x2"
       
   239 sorry
       
   240 
       
   241 lemma MATCH_neq:
       
   242   assumes a: "\<And>x. t = l x \<Longrightarrow> G x \<Longrightarrow> False"
       
   243   shows "MATCH (\<lambda>x. (G x, l x, r x)) d t = d"
       
   244 using a
       
   245 unfolding MATCH_def
       
   246 apply(subst if_not_P)
       
   247 apply(blast)
       
   248 apply(rule refl)
       
   249 done
       
   250 
       
   251 lemma MATCH_neq2:
       
   252   assumes a: "\<And>x1 x2. t = l x1 x2 \<Longrightarrow> G x1 x2 \<Longrightarrow> False"
       
   253   shows "MATCH (\<lambda>(x1,x2). (G x1 x2, l x1 x2, r x1 x2)) d t = d"
       
   254 using a
       
   255 unfolding MATCH_def
       
   256 apply(subst if_not_P)
       
   257 apply(auto)
       
   258 done
       
   259 *)
       
   260 
       
   261 end
       
   262 
       
   263 
       
   264