Nominal-General/Nominal2_Eqvt.thy
changeset 2002 74d869595fed
parent 1995 652f310f0dba
child 2009 4f7d7cbd4bc8
equal deleted inserted replaced
1997:bc075a4ef02f 2002:74d869595fed
   154 
   154 
   155 lemma Collect_eqvt2:
   155 lemma Collect_eqvt2:
   156   shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}"
   156   shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}"
   157   by (perm_simp add: permute_minus_cancel) (rule refl)
   157   by (perm_simp add: permute_minus_cancel) (rule refl)
   158 
   158 
       
   159 lemma Bex_eqvt[eqvt]:
       
   160   shows "p \<bullet> (\<exists>x \<in> S. P x) = (\<exists>x \<in> (p \<bullet> S). (p \<bullet> P) x)"
       
   161   unfolding Bex_def
       
   162   by (perm_simp) (rule refl)
       
   163 
       
   164 lemma Ball_eqvt[eqvt]:
       
   165   shows "p \<bullet> (\<forall>x \<in> S. P x) = (\<forall>x \<in> (p \<bullet> S). (p \<bullet> P) x)"
       
   166   unfolding Ball_def
       
   167   by (perm_simp) (rule refl)
       
   168 
   159 lemma empty_eqvt[eqvt]:
   169 lemma empty_eqvt[eqvt]:
   160   shows "p \<bullet> {} = {}"
   170   shows "p \<bullet> {} = {}"
   161   unfolding empty_def
   171   unfolding empty_def
   162   by (perm_simp) (rule refl)
   172   by (perm_simp) (rule refl)
   163 
   173 
   202   unfolding permute_set_eq_image image_insert ..
   212   unfolding permute_set_eq_image image_insert ..
   203 
   213 
   204 lemma vimage_eqvt[eqvt]:
   214 lemma vimage_eqvt[eqvt]:
   205   shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)"
   215   shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)"
   206   unfolding vimage_def
   216   unfolding vimage_def
       
   217   by (perm_simp) (rule refl)
       
   218 
       
   219 lemma Union_eqvt[eqvt]:
       
   220   shows "p \<bullet> (\<Union> S) = \<Union> (p \<bullet> S)"
       
   221   unfolding Union_eq 
   207   by (perm_simp) (rule refl)
   222   by (perm_simp) (rule refl)
   208 
   223 
   209 lemma finite_permute_iff:
   224 lemma finite_permute_iff:
   210   shows "finite (p \<bullet> A) \<longleftrightarrow> finite A"
   225   shows "finite (p \<bullet> A) \<longleftrightarrow> finite A"
   211   unfolding permute_set_eq_vimage
   226   unfolding permute_set_eq_vimage