QuotMain.thy
changeset 383 73a3670fb00e
parent 382 7ccbf4e2eb18
child 386 4fcbbb5b3b58
equal deleted inserted replaced
382:7ccbf4e2eb18 383:73a3670fb00e
   602 (******************************************)
   602 (******************************************)
   603 (******************************************)
   603 (******************************************)
   604 
   604 
   605 
   605 
   606 ML {*
   606 ML {*
   607 (* builds the relation for respects *)
   607 (*
       
   608 Regularizing an rtrm means:
       
   609  - quantifiers over a type that needs lifting are replaced by
       
   610    bounded quantifiers, for example:
       
   611       \<forall>x. P     \<Longrightarrow>     \<forall>x \<in> (Respects R). P  /  All (Respects R) P
       
   612 
       
   613    the relation R is given by the rty and qty;
   608  
   614  
       
   615  - abstractions over a type that needs lifting are replaced
       
   616    by bounded abstractions:
       
   617       \<lambda>x. P     \<Longrightarrow>     Ball (Respects R) (\<lambda>x. P)
       
   618 
       
   619  - equalities over the type being lifted are replaced by
       
   620    corresponding relations:
       
   621       A = B     \<Longrightarrow>     A \<approx> B
       
   622 
       
   623    example with more complicated types of A, B:
       
   624       A = B     \<Longrightarrow>     (op = \<Longrightarrow> op \<approx>) A B
       
   625 *)
       
   626 
       
   627 
       
   628 (* builds the relation that is the argument of respects *)
   609 fun mk_resp_arg lthy (rty, qty) =
   629 fun mk_resp_arg lthy (rty, qty) =
   610 let
   630 let
   611   val thy = ProofContext.theory_of lthy
   631   val thy = ProofContext.theory_of lthy
   612 in  
   632 in  
   613   if rty = qty
   633   if rty = qty
   657   | _ => f trm1 trm2
   677   | _ => f trm1 trm2
   658 
   678 
   659 (* the major type of All and Ex quantifiers *)
   679 (* the major type of All and Ex quantifiers *)
   660 fun qnt_typ ty = domain_type (domain_type ty)  
   680 fun qnt_typ ty = domain_type (domain_type ty)  
   661 *}
   681 *}
   662 
       
   663 (*
       
   664 Regularizing an rtrm means:
       
   665  - quantifiers over a type that needs lifting are replaced by
       
   666    bounded quantifiers, for example:
       
   667       \<forall>x. P     \<Longrightarrow>     \<forall>x \<in> (Respects R). P  /  All (Respects R) P
       
   668 
       
   669    the relation R is given by the rty and qty;
       
   670  
       
   671  - abstractions over a type that needs lifting are replaced
       
   672    by bounded abstractions:
       
   673       \<lambda>x. P     \<Longrightarrow>     Ball (Respects R) (\<lambda>x. P)
       
   674 
       
   675  - equalities over the type being lifted are replaced by
       
   676    corresponding relations:
       
   677       A = B     \<Longrightarrow>     A \<approx> B
       
   678 
       
   679    example with more complicated types of A, B:
       
   680       A = B     \<Longrightarrow>     (op = \<Longrightarrow> op \<approx>) A B
       
   681 *)
       
   682 
   682 
   683 ML {*
   683 ML {*
   684 (* produces a regularized version of rtm      *)
   684 (* produces a regularized version of rtm      *)
   685 (* - the result is still not completely typed *)
   685 (* - the result is still not completely typed *)
   686 (* - does not need any special treatment of   *)
   686 (* - does not need any special treatment of   *)
   744 fun mk_REGULARIZE_goal lthy rtrm qtrm =
   744 fun mk_REGULARIZE_goal lthy rtrm qtrm =
   745   Logic.mk_implies (rtrm, Syntax.check_term lthy (REGULARIZE_trm lthy rtrm qtrm))
   745   Logic.mk_implies (rtrm, Syntax.check_term lthy (REGULARIZE_trm lthy rtrm qtrm))
   746 *}
   746 *}
   747 
   747 
   748 (*
   748 (*
   749 To prove that the old theorem implies the new one, we first
   749 To prove that the raw theorem implies the regularised one, 
   750 atomize it and then try:
   750 we try in order:
   751 
   751 
   752  - Reflexivity of the relation
   752  - Reflexivity of the relation
   753  - Assumption
   753  - Assumption
   754  - Elimnating quantifiers on both sides of toplevel implication
   754  - Elimnating quantifiers on both sides of toplevel implication
   755  - Simplifying implications on both sides of toplevel implication
   755  - Simplifying implications on both sides of toplevel implication
   833       DT lthy "8" (rtac @{thm impI} THEN' (asm_full_simp_tac HOL_ss) THEN' rtac rel_refl),
   833       DT lthy "8" (rtac @{thm impI} THEN' (asm_full_simp_tac HOL_ss) THEN' rtac rel_refl),
   834       DT lthy "9" (rtac @{thm RIGHT_RES_FORALL_REGULAR})]
   834       DT lthy "9" (rtac @{thm RIGHT_RES_FORALL_REGULAR})]
   835 *}
   835 *}
   836 
   836 
   837 ML {*
   837 ML {*
   838 fun REGULARIZE_prove rtrm qtrm rel_eqv rel_refl lthy =
   838 fun regularize_tac ctxt rel_eqv rel_refl =
   839   let
   839   (ObjectLogic.full_atomize_tac) THEN'
   840     val goal = mk_REGULARIZE_goal lthy rtrm qtrm
   840   REPEAT_ALL_NEW (FIRST' [
   841   in
   841     rtac rel_refl,
   842     Goal.prove lthy [] [] goal 
   842     atac,
   843       (fn {context, ...} => REGULARIZE_tac' context rel_refl rel_eqv)
   843     rtac @{thm universal_twice},
   844   end
   844     (rtac @{thm impI} THEN' atac),
   845 *}
   845     rtac @{thm implication_twice},
       
   846     EqSubst.eqsubst_tac ctxt [0]
       
   847       [(@{thm equiv_res_forall} OF [rel_eqv]),
       
   848        (@{thm equiv_res_exists} OF [rel_eqv])],
       
   849     (* For a = b \<longrightarrow> a \<approx> b *)
       
   850     (rtac @{thm impI} THEN' (asm_full_simp_tac HOL_ss) THEN' rtac rel_refl),
       
   851     (rtac @{thm RIGHT_RES_FORALL_REGULAR})
       
   852   ]);
       
   853 *}
       
   854 
   846 
   855 
   847 (*
   856 (*
       
   857 Injections of REP and Abses
       
   858 ***************************
       
   859 
   848 Injecting REPABS means:
   860 Injecting REPABS means:
   849 
   861 
   850   For abstractions:
   862   For abstractions:
   851   * If the type of the abstraction doesn't need lifting we recurse.
   863   * If the type of the abstraction doesn't need lifting we recurse.
   852   * If it does we add RepAbs around the whole term and check if the
   864   * If it does we add RepAbs around the whole term and check if the
   864     (if it is not applied we treated it in Abs branch) then we
   876     (if it is not applied we treated it in Abs branch) then we
   865     put RepAbs and recurse
   877     put RepAbs and recurse
   866   * Otherwise just recurse.
   878   * Otherwise just recurse.
   867 *)
   879 *)
   868 
   880 
   869 (* rep-abs injection *)
       
   870 
       
   871 ML {*
   881 ML {*
   872 fun mk_repabs lthy (T, T') trm = 
   882 fun mk_repabs lthy (T, T') trm = 
   873   Quotient_Def.get_fun repF lthy (T, T') 
   883   Quotient_Def.get_fun repF lthy (T, T') 
   874     $ (Quotient_Def.get_fun absF lthy (T, T') $ trm)
   884     $ (Quotient_Def.get_fun absF lthy (T, T') $ trm)
   875 *}
   885 *}
   876 
       
   877 
   886 
   878 ML {*
   887 ML {*
   879 (* bound variables need to be treated properly,  *)
   888 (* bound variables need to be treated properly,  *)
   880 (* as the type of subterms need to be calculated *)
   889 (* as the type of subterms need to be calculated *)
   881 
   890 
   937 fun mk_inj_REPABS_goal lthy (rtrm, qtrm) =
   946 fun mk_inj_REPABS_goal lthy (rtrm, qtrm) =
   938   Logic.mk_equals (rtrm, Syntax.check_term lthy (inj_REPABS lthy (rtrm, qtrm)))
   947   Logic.mk_equals (rtrm, Syntax.check_term lthy (inj_REPABS lthy (rtrm, qtrm)))
   939 *}
   948 *}
   940 
   949 
   941 
   950 
   942 
   951 (* Genralisation of free variables in a goal *)
   943 (*
       
   944 To prove that the old theorem implies the new one, we first
       
   945 atomize it and then try:
       
   946  - Reflexivity of the relation
       
   947  - Assumption
       
   948  - Elimnating quantifiers on both sides of toplevel implication
       
   949  - Simplifying implications on both sides of toplevel implication
       
   950  - Ball (Respects ?E) ?P = All ?P
       
   951  - (\<And>x. ?R x \<Longrightarrow> ?P x \<longrightarrow> ?Q x) \<Longrightarrow> All ?P \<longrightarrow> Ball ?R ?Q
       
   952 *)
       
   953 
       
   954 ML {*
       
   955 fun regularize_tac ctxt rel_eqv rel_refl =
       
   956   (ObjectLogic.full_atomize_tac) THEN'
       
   957   REPEAT_ALL_NEW (FIRST' [
       
   958     rtac rel_refl,
       
   959     atac,
       
   960     rtac @{thm universal_twice},
       
   961     (rtac @{thm impI} THEN' atac),
       
   962     rtac @{thm implication_twice},
       
   963     EqSubst.eqsubst_tac ctxt [0]
       
   964       [(@{thm equiv_res_forall} OF [rel_eqv]),
       
   965        (@{thm equiv_res_exists} OF [rel_eqv])],
       
   966     (* For a = b \<longrightarrow> a \<approx> b *)
       
   967     (rtac @{thm impI} THEN' (asm_full_simp_tac HOL_ss) THEN' rtac rel_refl),
       
   968     (rtac @{thm RIGHT_RES_FORALL_REGULAR})
       
   969   ]);
       
   970 *}
       
   971 
   952 
   972 ML {*
   953 ML {*
   973 fun inst_spec ctrm =
   954 fun inst_spec ctrm =
   974 let
   955 let
   975    val cty = ctyp_of_term ctrm
   956    val cty = ctyp_of_term ctrm
   996       (K ((inst_spec_tac (rev cvrs) THEN' atac) 1))
   977       (K ((inst_spec_tac (rev cvrs) THEN' atac) 1))
   997   in
   978   in
   998     rtac rule i
   979     rtac rule i
   999   end)  
   980   end)  
  1000 *}
   981 *}
       
   982 
       
   983 (* General outline of the lifting procedure *)
       
   984 (* **************************************** *)
       
   985 (*                                          *)
       
   986 (* - A is the original raw theorem          *)
       
   987 (* - B is the regularized theorem           *)
       
   988 (* - C is the rep/abs injected version of B *) 
       
   989 (* - D is the lifted theorem                *)
       
   990 (*                                          *)
       
   991 (* - b is the regularization step           *)
       
   992 (* - c is the rep/abs injection step        *)
       
   993 (* - d is the cleaning part                 *)
  1001 
   994 
  1002 lemma procedure:
   995 lemma procedure:
  1003   assumes a: "A"
   996   assumes a: "A"
  1004   and     b: "A \<Longrightarrow> B"
   997   and     b: "A \<Longrightarrow> B"
  1005   and     c: "B = C"
   998   and     c: "B = C"
  1024 fun procedure_inst ctxt rtrm qtrm =
  1017 fun procedure_inst ctxt rtrm qtrm =
  1025 let
  1018 let
  1026   val thy = ProofContext.theory_of ctxt
  1019   val thy = ProofContext.theory_of ctxt
  1027   val rtrm' = HOLogic.dest_Trueprop rtrm
  1020   val rtrm' = HOLogic.dest_Trueprop rtrm
  1028   val qtrm' = HOLogic.dest_Trueprop qtrm
  1021   val qtrm' = HOLogic.dest_Trueprop qtrm
  1029   val reg_goal = Syntax.check_term ctxt (REGULARIZE_trm ctxt rtrm' qtrm')
  1022   val reg_goal = 
  1030                  handle (LIFT_MATCH s) => lift_error ctxt s rtrm qtrm
  1023         Syntax.check_term ctxt (REGULARIZE_trm ctxt rtrm' qtrm')
  1031   val inj_goal = Syntax.check_term ctxt (inj_REPABS ctxt (reg_goal, qtrm'))
  1024         handle (LIFT_MATCH s) => lift_error ctxt s rtrm qtrm
  1032                  handle (LIFT_MATCH s) => lift_error ctxt s rtrm qtrm
  1025   val inj_goal = 
       
  1026         Syntax.check_term ctxt (inj_REPABS ctxt (reg_goal, qtrm'))
       
  1027         handle (LIFT_MATCH s) => lift_error ctxt s rtrm qtrm
  1033 in
  1028 in
  1034   Drule.instantiate' []
  1029   Drule.instantiate' []
  1035     [SOME (cterm_of thy rtrm'),
  1030     [SOME (cterm_of thy rtrm'),
  1036      SOME (cterm_of thy reg_goal),
  1031      SOME (cterm_of thy reg_goal),
  1037      SOME (cterm_of thy inj_goal)]
  1032      SOME (cterm_of thy inj_goal)]