|
1 (*<*) |
|
2 theory Slides5 |
|
3 imports "~~/src/HOL/Library/LaTeXsugar" "Nominal" |
|
4 begin |
|
5 |
|
6 notation (latex output) |
|
7 set ("_") and |
|
8 Cons ("_::/_" [66,65] 65) |
|
9 |
|
10 (*>*) |
|
11 |
|
12 |
|
13 text_raw {* |
|
14 %%\renewcommand{\slidecaption}{Cambridge, 8.~June 2010} |
|
15 %%\renewcommand{\slidecaption}{Uppsala, 3.~March 2011} |
|
16 \renewcommand{\slidecaption}{Saarbrücken, 31.~March 2011} |
|
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
18 \mode<presentation>{ |
|
19 \begin{frame}<1>[t] |
|
20 \frametitle{% |
|
21 \begin{tabular}{@ {\hspace{-3mm}}c@ {}} |
|
22 \\ |
|
23 \huge General Bindings and Alpha-Equivalence in Nominal Isabelle\\[-2mm] |
|
24 \large Or, Nominal 2\\[-5mm] |
|
25 \end{tabular}} |
|
26 \begin{center} |
|
27 Christian Urban |
|
28 \end{center} |
|
29 \begin{center} |
|
30 joint work with {\bf Cezary Kaliszyk}\\[0mm] |
|
31 \end{center} |
|
32 \end{frame}} |
|
33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
34 |
|
35 *} |
|
36 |
|
37 text_raw {* |
|
38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
39 \mode<presentation>{ |
|
40 \begin{frame}<1-2> |
|
41 \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}} |
|
42 \mbox{}\\[-6mm] |
|
43 |
|
44 \begin{itemize} |
|
45 \item the old Nominal Isabelle provided a reasoning infrastructure for single binders\medskip |
|
46 |
|
47 \begin{center} |
|
48 Lam [a].(Var a) |
|
49 \end{center}\bigskip |
|
50 |
|
51 \item<2-> but representing |
|
52 |
|
53 \begin{center} |
|
54 $\forall\{a_1,\ldots,a_n\}.\; T$ |
|
55 \end{center}\medskip |
|
56 |
|
57 with single binders and reasoning about it is a \alert{\bf major} pain; |
|
58 take my word for it! |
|
59 \end{itemize} |
|
60 |
|
61 \only<1>{ |
|
62 \begin{textblock}{6}(1.5,11) |
|
63 \small |
|
64 for example\\ |
|
65 \begin{tabular}{l@ {\hspace{2mm}}l} |
|
66 & a $\fresh$ Lam [a]. t\\ |
|
67 & Lam [a]. (Var a) \alert{$=$} Lam [b]. (Var b)\\ |
|
68 & Barendregt-style reasoning about bound variables\\ |
|
69 \end{tabular} |
|
70 \end{textblock}} |
|
71 |
|
72 \end{frame}} |
|
73 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
74 *} |
|
75 |
|
76 text_raw {* |
|
77 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
78 \mode<presentation>{ |
|
79 \begin{frame}<1-4> |
|
80 \frametitle{\begin{tabular}{c}Binding Sets of Names\end{tabular}} |
|
81 \mbox{}\\[-3mm] |
|
82 |
|
83 \begin{itemize} |
|
84 \item binding sets of names has some interesting properties:\medskip |
|
85 |
|
86 \begin{center} |
|
87 \begin{tabular}{l} |
|
88 $\forall\{x, y\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{y, x\}.\, y \rightarrow x$ |
|
89 \bigskip\smallskip\\ |
|
90 |
|
91 \onslide<2->{% |
|
92 $\forall\{x, y\}.\, x \rightarrow y \;\;\not\approx_\alpha\;\; \forall\{z\}.\, z \rightarrow z$ |
|
93 }\bigskip\smallskip\\ |
|
94 |
|
95 \onslide<3->{% |
|
96 $\forall\{x\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{x, \alert{z}\}.\, x \rightarrow y$ |
|
97 }\medskip\\ |
|
98 \onslide<3->{\hspace{4cm}\small provided $z$ is fresh for the type} |
|
99 \end{tabular} |
|
100 \end{center} |
|
101 \end{itemize} |
|
102 |
|
103 \begin{textblock}{8}(2,14.5) |
|
104 \footnotesize $^*$ $x$, $y$, $z$ are assumed to be distinct |
|
105 \end{textblock} |
|
106 |
|
107 \only<4>{ |
|
108 \begin{textblock}{6}(2.5,4) |
|
109 \begin{tikzpicture} |
|
110 \draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
111 {\normalsize\color{darkgray} |
|
112 \begin{minipage}{8cm}\raggedright |
|
113 For type-schemes the order of bound names does not matter, and |
|
114 alpha-equivalence is preserved under \alert{vacuous} binders. |
|
115 \end{minipage}}; |
|
116 \end{tikzpicture} |
|
117 \end{textblock}} |
|
118 \end{frame}} |
|
119 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
120 *} |
|
121 |
|
122 text_raw {* |
|
123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
124 \mode<presentation>{ |
|
125 \begin{frame}<1-3> |
|
126 \frametitle{\begin{tabular}{c}Other Binding Modes\end{tabular}} |
|
127 \mbox{}\\[-3mm] |
|
128 |
|
129 \begin{itemize} |
|
130 \item alpha-equivalence being preserved under vacuous binders is \underline{not} always |
|
131 wanted:\bigskip\bigskip\normalsize |
|
132 |
|
133 \begin{tabular}{@ {\hspace{-8mm}}l} |
|
134 $\text{let}\;x = 3\;\text{and}\;y = 2\;\text{in}\;x - y\;\text{end}$\medskip\\ |
|
135 \onslide<2->{$\;\;\;\only<2>{\approx_\alpha}\only<3>{\alert{\not\approx_\alpha}} |
|
136 \text{let}\;y = 2\;\text{and}\;x = 3\only<3->{\alert{\;\text{and} |
|
137 \;z = \text{loop}}}\;\text{in}\;x - y\;\text{end}$} |
|
138 \end{tabular} |
|
139 |
|
140 |
|
141 \end{itemize} |
|
142 |
|
143 \end{frame}} |
|
144 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
145 *} |
|
146 |
|
147 text_raw {* |
|
148 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
149 \mode<presentation>{ |
|
150 \begin{frame}<1> |
|
151 \frametitle{\begin{tabular}{c}\LARGE{}Even Another Binding Mode\end{tabular}} |
|
152 \mbox{}\\[-3mm] |
|
153 |
|
154 \begin{itemize} |
|
155 \item sometimes one wants to abstract more than one name, but the order \underline{does} matter\bigskip |
|
156 |
|
157 \begin{center} |
|
158 \begin{tabular}{@ {\hspace{-8mm}}l} |
|
159 $\text{let}\;(x, y) = (3, 2)\;\text{in}\;x - y\;\text{end}$\medskip\\ |
|
160 $\;\;\;\not\approx_\alpha |
|
161 \text{let}\;(y, x) = (3, 2)\;\text{in}\;x - y\;\text{end}$ |
|
162 \end{tabular} |
|
163 \end{center} |
|
164 |
|
165 |
|
166 \end{itemize} |
|
167 |
|
168 \end{frame}} |
|
169 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
170 *} |
|
171 |
|
172 text_raw {* |
|
173 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
174 \mode<presentation>{ |
|
175 \begin{frame}<1-2> |
|
176 \frametitle{\begin{tabular}{c}\LARGE{}Three Binding Modes\end{tabular}} |
|
177 \mbox{}\\[-3mm] |
|
178 |
|
179 \begin{itemize} |
|
180 \item the order does not matter and alpha-equivelence is preserved under |
|
181 vacuous binders \textcolor{gray}{(restriction)}\medskip |
|
182 |
|
183 \item the order does not matter, but the cardinality of the binders |
|
184 must be the same \textcolor{gray}{(abstraction)}\medskip |
|
185 |
|
186 \item the order does matter \textcolor{gray}{(iterated single binders)} |
|
187 \end{itemize} |
|
188 |
|
189 \onslide<2->{ |
|
190 \begin{center} |
|
191 \isacommand{bind (set+)}\hspace{6mm} |
|
192 \isacommand{bind (set)}\hspace{6mm} |
|
193 \isacommand{bind} |
|
194 \end{center}} |
|
195 |
|
196 \end{frame}} |
|
197 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
198 *} |
|
199 |
|
200 text_raw {* |
|
201 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
202 \mode<presentation>{ |
|
203 \begin{frame}<1-3> |
|
204 \frametitle{\begin{tabular}{c}Specification of Binding\end{tabular}} |
|
205 \mbox{}\\[-6mm] |
|
206 |
|
207 \mbox{}\hspace{10mm} |
|
208 \begin{tabular}{ll} |
|
209 \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\ |
|
210 \hspace{5mm}\phantom{$|$} Var name\\ |
|
211 \hspace{5mm}$|$ App trm trm\\ |
|
212 \hspace{5mm}$|$ Lam \only<2->{x::}name \only<2->{t::}trm |
|
213 & \onslide<2->{\isacommand{bind} x \isacommand{in} t}\\ |
|
214 \hspace{5mm}$|$ Let \only<2->{as::}assn \only<2->{t::}trm |
|
215 & \onslide<2->{\isacommand{bind} bn(as) \isacommand{in} t}\\ |
|
216 \multicolumn{2}{l}{\isacommand{and} assn $=$}\\ |
|
217 \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\ |
|
218 \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\ |
|
219 \multicolumn{2}{l}{\onslide<3->{\isacommand{binder} bn \isacommand{where}}}\\ |
|
220 \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ []}}\\ |
|
221 \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}$|$ bn(ACons a t as) $=$ [a] @ bn(as)}}\\ |
|
222 \end{tabular} |
|
223 |
|
224 |
|
225 |
|
226 \end{frame}} |
|
227 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
228 *} |
|
229 |
|
230 text_raw {* |
|
231 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
232 \mode<presentation>{ |
|
233 \begin{frame}<1-5> |
|
234 \frametitle{\begin{tabular}{c}Inspiration from Ott\end{tabular}} |
|
235 \mbox{}\\[-3mm] |
|
236 |
|
237 \begin{itemize} |
|
238 \item this way of specifying binding is inspired by |
|
239 {\bf Ott}\onslide<2->{, \alert{\bf but} we made some adjustments:}\medskip |
|
240 |
|
241 |
|
242 \only<2>{ |
|
243 \begin{itemize} |
|
244 \item Ott allows specifications like\smallskip |
|
245 \begin{center} |
|
246 $t ::= t\;t\; |\;\lambda x.t$ |
|
247 \end{center} |
|
248 \end{itemize}} |
|
249 |
|
250 \only<3-4>{ |
|
251 \begin{itemize} |
|
252 \item whether something is bound can depend in Ott on other bound things\smallskip |
|
253 \begin{center} |
|
254 \begin{tikzpicture} |
|
255 \node (A) at (-0.5,1) {Foo $(\lambda y. \lambda x. t)$}; |
|
256 \node (B) at ( 1.1,1) {$s$}; |
|
257 \onslide<4>{\node (C) at (0.5,0) {$\{y, x\}$};} |
|
258 \onslide<4>{\draw[->,red,line width=1mm] (A) -- (C);} |
|
259 \onslide<4>{\draw[->,red,line width=1mm] (C) -- (B);} |
|
260 \end{tikzpicture} |
|
261 \end{center} |
|
262 \onslide<4>{this might make sense for ``raw'' terms, but not at all |
|
263 for $\alpha$-equated terms} |
|
264 \end{itemize}} |
|
265 |
|
266 \only<5>{ |
|
267 \begin{itemize} |
|
268 \item we allow multiple ``binders'' and ``bodies''\smallskip |
|
269 \begin{center} |
|
270 \begin{tabular}{l} |
|
271 \isacommand{bind} a b c \ldots \isacommand{in} x y z \ldots\\ |
|
272 \isacommand{bind (set)} a b c \ldots \isacommand{in} x y z \ldots\\ |
|
273 \isacommand{bind (set+)} a b c \ldots \isacommand{in} x y z \ldots |
|
274 \end{tabular} |
|
275 \end{center}\bigskip\medskip |
|
276 the reason is that with our definition of $\alpha$-equivalence\medskip |
|
277 \begin{center} |
|
278 \begin{tabular}{l} |
|
279 \isacommand{bind (set+)} as \isacommand{in} x y $\not\Leftrightarrow$\\ |
|
280 \hspace{8mm}\isacommand{bind (set+)} as \isacommand{in} x, \isacommand{bind (set+)} as \isacommand{in} y |
|
281 \end{tabular} |
|
282 \end{center}\medskip |
|
283 |
|
284 same with \isacommand{bind (set)} |
|
285 \end{itemize}} |
|
286 \end{itemize} |
|
287 |
|
288 |
|
289 \end{frame}} |
|
290 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
291 *} |
|
292 |
|
293 text_raw {* |
|
294 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
295 \mode<presentation>{ |
|
296 \begin{frame}<1> |
|
297 \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}} |
|
298 \mbox{}\\[-3mm] |
|
299 |
|
300 \begin{itemize} |
|
301 \item in the old Nominal Isabelle, we represented single binders as partial functions:\bigskip |
|
302 |
|
303 \begin{center} |
|
304 \begin{tabular}{l} |
|
305 Lam [$a$].\,$t$ $\;{^\text{``}}\!\dn{}\!^{\text{''}}$\\[2mm] |
|
306 \;\;\;\;$\lambda b.$\;$\text{if}\;a = b\;\text{then}\;t\;\text{else}$\\ |
|
307 \phantom{\;\;\;\;$\lambda b.$\;\;\;\;\;\;}$\text{if}\;b \fresh t\; |
|
308 \text{then}\;(a\;b)\act t\;\text{else}\;\text{error}$ |
|
309 \end{tabular} |
|
310 \end{center} |
|
311 \end{itemize} |
|
312 |
|
313 \begin{textblock}{10}(2,14) |
|
314 \footnotesize $^*$ alpha-equality coincides with equality on functions |
|
315 \end{textblock} |
|
316 \end{frame}} |
|
317 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
318 *} |
|
319 |
|
320 text_raw {* |
|
321 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
322 \mode<presentation>{ |
|
323 \begin{frame}<1-> |
|
324 \frametitle{\begin{tabular}{c}New Design\end{tabular}} |
|
325 \mbox{}\\[4mm] |
|
326 |
|
327 \begin{center} |
|
328 \begin{tikzpicture} |
|
329 {\draw (0,0) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm] |
|
330 (A) {\begin{minipage}{1.1cm}bind.\\spec.\end{minipage}};} |
|
331 |
|
332 {\draw (3,0) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm] |
|
333 (B) {\begin{minipage}{1.1cm}raw\\terms\end{minipage}};} |
|
334 |
|
335 \alt<2> |
|
336 {\draw (6,0) node[inner sep=3mm, ultra thick, draw=red, rounded corners=2mm] |
|
337 (C) {\textcolor{red}{\begin{minipage}{1.1cm}$\alpha$-\\equiv.\end{minipage}}};} |
|
338 {\draw (6,0) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm] |
|
339 (C) {\begin{minipage}{1.1cm}$\alpha$-\\equiv.\end{minipage}};} |
|
340 |
|
341 {\draw (0,-3) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm] |
|
342 (D) {\begin{minipage}{1.1cm}quot.\\type\end{minipage}};} |
|
343 |
|
344 {\draw (3,-3) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm] |
|
345 (E) {\begin{minipage}{1.1cm}lift\\thms\end{minipage}};} |
|
346 |
|
347 {\draw (6,-3) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm] |
|
348 (F) {\begin{minipage}{1.1cm}add.\\thms\end{minipage}};} |
|
349 |
|
350 \draw[->,fg!50,line width=1mm] (A) -- (B); |
|
351 \draw[->,fg!50,line width=1mm] (B) -- (C); |
|
352 \draw[->,fg!50,line width=1mm, line join=round, rounded corners=2mm] |
|
353 (C) -- (8,0) -- (8,-1.5) -- (-2,-1.5) -- (-2,-3) -- (D); |
|
354 \draw[->,fg!50,line width=1mm] (D) -- (E); |
|
355 \draw[->,fg!50,line width=1mm] (E) -- (F); |
|
356 \end{tikzpicture} |
|
357 \end{center} |
|
358 |
|
359 \end{frame}} |
|
360 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
361 *} |
|
362 |
|
363 |
|
364 |
|
365 text_raw {* |
|
366 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
367 \mode<presentation>{ |
|
368 \begin{frame}<1-8> |
|
369 \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}} |
|
370 \mbox{}\\[-3mm] |
|
371 |
|
372 \begin{itemize} |
|
373 \item lets first look at pairs\bigskip\medskip |
|
374 |
|
375 \begin{tabular}{@ {\hspace{1cm}}l} |
|
376 $(as, x) \onslide<2->{\approx\!}\makebox[0mm][l]{\only<2-6>{${}_{\text{set}}$}% |
|
377 \only<7>{${}_{\text{\alert{list}}}$}% |
|
378 \only<8>{${}_{\text{\alert{set+}}}$}}% |
|
379 \onslide<3->{^{R,\text{fv}}}\,\onslide<2->{(bs,y)}$ |
|
380 \end{tabular}\bigskip |
|
381 \end{itemize} |
|
382 |
|
383 \only<1>{ |
|
384 \begin{textblock}{8}(3,8.5) |
|
385 \begin{tabular}{l@ {\hspace{2mm}}p{8cm}} |
|
386 & $as$ is a set of names\ldots the binders\\ |
|
387 & $x$ is the body (might be a tuple)\\ |
|
388 & $\approx_{\text{set}}$ is where the cardinality |
|
389 of the binders has to be the same\\ |
|
390 \end{tabular} |
|
391 \end{textblock}} |
|
392 |
|
393 \only<4->{ |
|
394 \begin{textblock}{12}(5,8) |
|
395 \begin{tabular}{ll@ {\hspace{1mm}}l} |
|
396 $\dn$ & \onslide<5->{$\exists \pi.\,$} & $\text{fv}(x) - as = \text{fv}(y) - bs$\\[1mm] |
|
397 & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$\text{fv}(x) - as \fresh^* \pi$}\\[1mm] |
|
398 & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$(\pi \act x)\;R\;y$}\\[1mm] |
|
399 & \onslide<6-7>{$\;\;\;\wedge$} & \onslide<6-7>{$\pi \act as = bs$}\\ |
|
400 \end{tabular} |
|
401 \end{textblock}} |
|
402 |
|
403 \only<7>{ |
|
404 \begin{textblock}{7}(3,13.8) |
|
405 \footnotesize $^*$ $as$ and $bs$ are \alert{lists} of names |
|
406 \end{textblock}} |
|
407 \end{frame}} |
|
408 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
409 *} |
|
410 |
|
411 text_raw {* |
|
412 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
413 \mode<presentation>{ |
|
414 \begin{frame}<1-3> |
|
415 \frametitle{\begin{tabular}{c}Examples\end{tabular}} |
|
416 \mbox{}\\[-3mm] |
|
417 |
|
418 \begin{itemize} |
|
419 \item lets look at ``type-schemes'':\medskip\medskip |
|
420 |
|
421 \begin{center} |
|
422 $(as, x) \approx\!\makebox[0mm][l]{${}_{\text{set}}$}\only<1>{{}^{R,\text{fv}}}\only<2->{{}^{\alert{=},\alert{\text{fv}}}} (bs, y)$ |
|
423 \end{center}\medskip |
|
424 |
|
425 \onslide<2->{ |
|
426 \begin{center} |
|
427 \begin{tabular}{l} |
|
428 $\text{fv}(x) = \{x\}$\\[1mm] |
|
429 $\text{fv}(T_1 \rightarrow T_2) = \text{fv}(T_1) \cup \text{fv}(T_2)$\\ |
|
430 \end{tabular} |
|
431 \end{center}} |
|
432 \end{itemize} |
|
433 |
|
434 |
|
435 \only<3->{ |
|
436 \begin{textblock}{4}(0.3,12) |
|
437 \begin{tikzpicture} |
|
438 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
439 {\tiny\color{darkgray} |
|
440 \begin{minipage}{3.4cm}\raggedright |
|
441 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
442 \multicolumn{2}{@ {}l}{set+:}\\ |
|
443 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
444 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
445 $\wedge$ & $\pi \cdot x = y$\\ |
|
446 \\ |
|
447 \end{tabular} |
|
448 \end{minipage}}; |
|
449 \end{tikzpicture} |
|
450 \end{textblock}} |
|
451 \only<3->{ |
|
452 \begin{textblock}{4}(5.2,12) |
|
453 \begin{tikzpicture} |
|
454 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
455 {\tiny\color{darkgray} |
|
456 \begin{minipage}{3.4cm}\raggedright |
|
457 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
458 \multicolumn{2}{@ {}l}{set:}\\ |
|
459 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
460 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
461 $\wedge$ & $\pi \cdot x = y$\\ |
|
462 $\wedge$ & $\pi \cdot as = bs$\\ |
|
463 \end{tabular} |
|
464 \end{minipage}}; |
|
465 \end{tikzpicture} |
|
466 \end{textblock}} |
|
467 \only<3->{ |
|
468 \begin{textblock}{4}(10.2,12) |
|
469 \begin{tikzpicture} |
|
470 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
471 {\tiny\color{darkgray} |
|
472 \begin{minipage}{3.4cm}\raggedright |
|
473 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
474 \multicolumn{2}{@ {}l}{list:}\\ |
|
475 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
476 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
477 $\wedge$ & $\pi \cdot x = y$\\ |
|
478 $\wedge$ & $\pi \cdot as = bs$\\ |
|
479 \end{tabular} |
|
480 \end{minipage}}; |
|
481 \end{tikzpicture} |
|
482 \end{textblock}} |
|
483 |
|
484 \end{frame}} |
|
485 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
486 *} |
|
487 |
|
488 text_raw {* |
|
489 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
490 \mode<presentation>{ |
|
491 \begin{frame}<1-2> |
|
492 \frametitle{\begin{tabular}{c}Examples\end{tabular}} |
|
493 \mbox{}\\[-3mm] |
|
494 |
|
495 \begin{center} |
|
496 \only<1>{$(\{x, y\}, x \rightarrow y) \approx_? (\{x, y\}, y \rightarrow x)$} |
|
497 \only<2>{$([x, y], x \rightarrow y) \approx_? ([x, y], y \rightarrow x)$} |
|
498 \end{center} |
|
499 |
|
500 \begin{itemize} |
|
501 \item $\approx_{\text{set+}}$, $\approx_{\text{set}}$% |
|
502 \only<2>{, \alert{$\not\approx_{\text{list}}$}} |
|
503 \end{itemize} |
|
504 |
|
505 |
|
506 \only<1->{ |
|
507 \begin{textblock}{4}(0.3,12) |
|
508 \begin{tikzpicture} |
|
509 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
510 {\tiny\color{darkgray} |
|
511 \begin{minipage}{3.4cm}\raggedright |
|
512 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
513 \multicolumn{2}{@ {}l}{set+:}\\ |
|
514 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
515 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
516 $\wedge$ & $\pi \cdot x = y$\\ |
|
517 \\ |
|
518 \end{tabular} |
|
519 \end{minipage}}; |
|
520 \end{tikzpicture} |
|
521 \end{textblock}} |
|
522 \only<1->{ |
|
523 \begin{textblock}{4}(5.2,12) |
|
524 \begin{tikzpicture} |
|
525 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
526 {\tiny\color{darkgray} |
|
527 \begin{minipage}{3.4cm}\raggedright |
|
528 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
529 \multicolumn{2}{@ {}l}{set:}\\ |
|
530 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
531 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
532 $\wedge$ & $\pi \cdot x = y$\\ |
|
533 $\wedge$ & $\pi \cdot as = bs$\\ |
|
534 \end{tabular} |
|
535 \end{minipage}}; |
|
536 \end{tikzpicture} |
|
537 \end{textblock}} |
|
538 \only<1->{ |
|
539 \begin{textblock}{4}(10.2,12) |
|
540 \begin{tikzpicture} |
|
541 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
542 {\tiny\color{darkgray} |
|
543 \begin{minipage}{3.4cm}\raggedright |
|
544 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
545 \multicolumn{2}{@ {}l}{list:}\\ |
|
546 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
547 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
548 $\wedge$ & $\pi \cdot x = y$\\ |
|
549 $\wedge$ & $\pi \cdot as = bs$\\ |
|
550 \end{tabular} |
|
551 \end{minipage}}; |
|
552 \end{tikzpicture} |
|
553 \end{textblock}} |
|
554 |
|
555 \end{frame}} |
|
556 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
557 *} |
|
558 |
|
559 text_raw {* |
|
560 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
561 \mode<presentation>{ |
|
562 \begin{frame}<1-2> |
|
563 \frametitle{\begin{tabular}{c}Examples\end{tabular}} |
|
564 \mbox{}\\[-3mm] |
|
565 |
|
566 \begin{center} |
|
567 \only<1>{$(\{x\}, x) \approx_? (\{x, y\}, x)$} |
|
568 \end{center} |
|
569 |
|
570 \begin{itemize} |
|
571 \item $\approx_{\text{set+}}$, $\not\approx_{\text{set}}$, |
|
572 $\not\approx_{\text{list}}$ |
|
573 \end{itemize} |
|
574 |
|
575 |
|
576 \only<1->{ |
|
577 \begin{textblock}{4}(0.3,12) |
|
578 \begin{tikzpicture} |
|
579 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
580 {\tiny\color{darkgray} |
|
581 \begin{minipage}{3.4cm}\raggedright |
|
582 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
583 \multicolumn{2}{@ {}l}{set+:}\\ |
|
584 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
585 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
586 $\wedge$ & $\pi \cdot x = y$\\ |
|
587 \\ |
|
588 \end{tabular} |
|
589 \end{minipage}}; |
|
590 \end{tikzpicture} |
|
591 \end{textblock}} |
|
592 \only<1->{ |
|
593 \begin{textblock}{4}(5.2,12) |
|
594 \begin{tikzpicture} |
|
595 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
596 {\tiny\color{darkgray} |
|
597 \begin{minipage}{3.4cm}\raggedright |
|
598 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
599 \multicolumn{2}{@ {}l}{set:}\\ |
|
600 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
601 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
602 $\wedge$ & $\pi \cdot x = y$\\ |
|
603 $\wedge$ & $\pi \cdot as = bs$\\ |
|
604 \end{tabular} |
|
605 \end{minipage}}; |
|
606 \end{tikzpicture} |
|
607 \end{textblock}} |
|
608 \only<1->{ |
|
609 \begin{textblock}{4}(10.2,12) |
|
610 \begin{tikzpicture} |
|
611 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
612 {\tiny\color{darkgray} |
|
613 \begin{minipage}{3.4cm}\raggedright |
|
614 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
615 \multicolumn{2}{@ {}l}{list:}\\ |
|
616 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
617 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
618 $\wedge$ & $\pi \cdot x = y$\\ |
|
619 $\wedge$ & $\pi \cdot as = bs$\\ |
|
620 \end{tabular} |
|
621 \end{minipage}}; |
|
622 \end{tikzpicture} |
|
623 \end{textblock}} |
|
624 |
|
625 \only<2>{ |
|
626 \begin{textblock}{6}(2.5,4) |
|
627 \begin{tikzpicture} |
|
628 \draw (0,0) node[inner sep=5mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
629 {\normalsize |
|
630 \begin{minipage}{8cm}\raggedright |
|
631 \begin{itemize} |
|
632 \item \color{darkgray}$\alpha$-equivalences coincide when a single name is |
|
633 abstracted |
|
634 \item \color{darkgray}in that case they are equivalent to ``old-fashioned'' definitions of $\alpha$ |
|
635 \end{itemize} |
|
636 \end{minipage}}; |
|
637 \end{tikzpicture} |
|
638 \end{textblock}} |
|
639 |
|
640 \end{frame}} |
|
641 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
642 *} |
|
643 |
|
644 text_raw {* |
|
645 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
646 \mode<presentation>{ |
|
647 \begin{frame}<1-3> |
|
648 \frametitle{\begin{tabular}{c}General Abstractions\end{tabular}} |
|
649 \mbox{}\\[-7mm] |
|
650 |
|
651 \begin{itemize} |
|
652 \item we take $(as, x) \approx\!\makebox[0mm][l]{${}_{{}*{}}$}^{=,\text{supp}} (bs, y)$\medskip |
|
653 \item they are equivalence relations\medskip |
|
654 \item we can therefore use the quotient package to introduce the |
|
655 types $\beta\;\text{abs}_*$\bigskip |
|
656 \begin{center} |
|
657 \only<1>{$[as].\,x$} |
|
658 \only<2>{$\text{supp}([as].x) = \text{supp}(x) - as$} |
|
659 \only<3>{% |
|
660 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
661 \multicolumn{2}{@ {\hspace{-7mm}}l}{$[as]. x \alert{=} [bs].y\;\;\;\text{if\!f}$}\\[2mm] |
|
662 $\exists \pi.$ & $\text{supp}(x) - as = \text{supp}(y) - bs$\\ |
|
663 $\wedge$ & $\text{supp}(x) - as \fresh^* \pi$\\ |
|
664 $\wedge$ & $\pi \act x = y $\\ |
|
665 $(\wedge$ & $\pi \act as = bs)\;^*$\\ |
|
666 \end{tabular}} |
|
667 \end{center} |
|
668 \end{itemize} |
|
669 |
|
670 \only<1->{ |
|
671 \begin{textblock}{8}(12,3.8) |
|
672 \footnotesize $^*$ set, set+, list |
|
673 \end{textblock}} |
|
674 |
|
675 \end{frame}} |
|
676 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
677 *} |
|
678 |
|
679 text_raw {* |
|
680 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
681 \mode<presentation>{ |
|
682 \begin{frame}<1> |
|
683 \frametitle{\begin{tabular}{c}A Problem\end{tabular}} |
|
684 \mbox{}\\[-3mm] |
|
685 |
|
686 \begin{center} |
|
687 $\text{let}\;x_1=t_1 \ldots x_n=t_n\;\text{in}\;s$ |
|
688 \end{center} |
|
689 |
|
690 \begin{itemize} |
|
691 \item we cannot represent this as\medskip |
|
692 \begin{center} |
|
693 $\text{let}\;[x_1,\ldots,x_n]\alert{.}s\;\;[t_1,\ldots,t_n]$ |
|
694 \end{center}\bigskip |
|
695 |
|
696 because\medskip |
|
697 \begin{center} |
|
698 $\text{let}\;[x].s\;\;[t_1,t_2]$ |
|
699 \end{center} |
|
700 \end{itemize} |
|
701 |
|
702 |
|
703 \end{frame}} |
|
704 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
705 *} |
|
706 |
|
707 text_raw {* |
|
708 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
709 \mode<presentation>{ |
|
710 \begin{frame}<1-> |
|
711 \frametitle{\begin{tabular}{c}Our Specifications\end{tabular}} |
|
712 \mbox{}\\[-6mm] |
|
713 |
|
714 \mbox{}\hspace{10mm} |
|
715 \begin{tabular}{ll} |
|
716 \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\ |
|
717 \hspace{5mm}\phantom{$|$} Var name\\ |
|
718 \hspace{5mm}$|$ App trm trm\\ |
|
719 \hspace{5mm}$|$ Lam x::name t::trm |
|
720 & \isacommand{bind} x \isacommand{in} t\\ |
|
721 \hspace{5mm}$|$ Let as::assn t::trm |
|
722 & \isacommand{bind} bn(as) \isacommand{in} t\\ |
|
723 \multicolumn{2}{l}{\isacommand{and} assn $=$}\\ |
|
724 \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\ |
|
725 \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\ |
|
726 \multicolumn{2}{l}{\isacommand{binder} bn \isacommand{where}}\\ |
|
727 \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\ |
|
728 \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\ |
|
729 \end{tabular} |
|
730 |
|
731 \end{frame}} |
|
732 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
733 *} |
|
734 |
|
735 text_raw {* |
|
736 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
737 \mode<presentation>{ |
|
738 \begin{frame}<1-2> |
|
739 \frametitle{\begin{tabular}{c}``Raw'' Definitions\end{tabular}} |
|
740 \mbox{}\\[-6mm] |
|
741 |
|
742 \mbox{}\hspace{10mm} |
|
743 \begin{tabular}{ll} |
|
744 \multicolumn{2}{l}{\isacommand{datatype} trm $=$}\\ |
|
745 \hspace{5mm}\phantom{$|$} Var name\\ |
|
746 \hspace{5mm}$|$ App trm trm\\ |
|
747 \hspace{5mm}$|$ Lam name trm\\ |
|
748 \hspace{5mm}$|$ Let assn trm\\ |
|
749 \multicolumn{2}{l}{\isacommand{and} assn $=$}\\ |
|
750 \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\ |
|
751 \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\[5mm] |
|
752 \multicolumn{2}{l}{\isacommand{function} bn \isacommand{where}}\\ |
|
753 \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\ |
|
754 \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\ |
|
755 \end{tabular} |
|
756 |
|
757 \only<2>{ |
|
758 \begin{textblock}{5}(10,5) |
|
759 $+$ \begin{tabular}{l}automatically\\ |
|
760 generate fv's\end{tabular} |
|
761 \end{textblock}} |
|
762 \end{frame}} |
|
763 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
764 *} |
|
765 |
|
766 text_raw {* |
|
767 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
768 \mode<presentation>{ |
|
769 \begin{frame}<1> |
|
770 \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}} |
|
771 \mbox{}\\[6mm] |
|
772 |
|
773 \begin{center} |
|
774 Lam x::name t::trm \hspace{10mm}\isacommand{bind} x \isacommand{in} t\\ |
|
775 \end{center} |
|
776 |
|
777 |
|
778 \[ |
|
779 \infer[\text{Lam-}\!\approx_\alpha] |
|
780 {\text{Lam}\;x\;t \approx_\alpha \text{Lam}\;x'\;t'} |
|
781 {([x], t) \approx\!\makebox[0mm][l]{${}_{\text{list}}$} |
|
782 ^{\approx_\alpha,\text{fv}} ([x'], t')} |
|
783 \] |
|
784 |
|
785 |
|
786 \end{frame}} |
|
787 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
788 *} |
|
789 |
|
790 text_raw {* |
|
791 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
792 \mode<presentation>{ |
|
793 \begin{frame}<1> |
|
794 \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}} |
|
795 \mbox{}\\[6mm] |
|
796 |
|
797 \begin{center} |
|
798 Lam x::name y::name t::trm s::trm \hspace{5mm}\isacommand{bind} x y \isacommand{in} t s\\ |
|
799 \end{center} |
|
800 |
|
801 |
|
802 \[ |
|
803 \infer[\text{Lam-}\!\approx_\alpha] |
|
804 {\text{Lam}\;x\;y\;t\;s \approx_\alpha \text{Lam}\;x'\;y'\;t'\;s'} |
|
805 {([x, y], (t, s)) \approx\!\makebox[0mm][l]{${}_{\text{list}}$} |
|
806 ^{R, fv} ([x', y'], (t', s'))} |
|
807 \] |
|
808 |
|
809 \footnotesize |
|
810 where $R =\;\approx_\alpha\times\approx_\alpha$ and $fv = \text{fv}\cup\text{fv}$ |
|
811 |
|
812 \end{frame}} |
|
813 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
814 *} |
|
815 |
|
816 text_raw {* |
|
817 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
818 \mode<presentation>{ |
|
819 \begin{frame}<1-2> |
|
820 \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}} |
|
821 \mbox{}\\[6mm] |
|
822 |
|
823 \begin{center} |
|
824 Let as::assn t::trm \hspace{10mm}\isacommand{bind} bn(as) \isacommand{in} t\\ |
|
825 \end{center} |
|
826 |
|
827 |
|
828 \[ |
|
829 \infer[\text{Let-}\!\approx_\alpha] |
|
830 {\text{Let}\;as\;t \approx_\alpha \text{Let}\;as'\;t'} |
|
831 {(\text{bn}(as), t) \approx\!\makebox[0mm][l]{${}_{\text{list}}$} |
|
832 ^{\approx_\alpha,\text{fv}} (\text{bn}(as'), t') & |
|
833 \onslide<2->{as \approx_\alpha^{\text{bn}} as'}} |
|
834 \]\bigskip |
|
835 |
|
836 |
|
837 \onslide<1->{\small{}bn-function $\Rightarrow$ \alert{deep binders}} |
|
838 \end{frame}} |
|
839 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
840 *} |
|
841 |
|
842 |
|
843 text_raw {* |
|
844 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
845 \mode<presentation>{ |
|
846 \begin{frame}<1-> |
|
847 \frametitle{\begin{tabular}{c}\LARGE{}$\alpha$ for Binding Functions\end{tabular}} |
|
848 \mbox{}\\[-6mm] |
|
849 |
|
850 \mbox{}\hspace{10mm} |
|
851 \begin{tabular}{l} |
|
852 \ldots\\ |
|
853 \isacommand{binder} bn \isacommand{where}\\ |
|
854 \phantom{$|$} bn(ANil) $=$ $[]$\\ |
|
855 $|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)\\ |
|
856 \end{tabular}\bigskip |
|
857 |
|
858 \begin{center} |
|
859 \mbox{\infer{\text{ANil} \approx_\alpha^{\text{bn}} \text{ANil}}{}}\bigskip |
|
860 |
|
861 \mbox{\infer{\text{ACons}\;a\;t\;as \approx_\alpha^{\text{bn}} \text{ACons}\;a'\;t'\;as'} |
|
862 {t \approx_\alpha t' & as \approx_\alpha^{bn} as'}} |
|
863 \end{center} |
|
864 |
|
865 |
|
866 \end{frame}} |
|
867 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
868 *} |
|
869 |
|
870 |
|
871 text_raw {* |
|
872 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
873 \mode<presentation>{ |
|
874 \begin{frame}<1> |
|
875 \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}} |
|
876 \mbox{}\\[6mm] |
|
877 |
|
878 \begin{center} |
|
879 LetRec as::assn t::trm \hspace{10mm}\isacommand{bind} bn(as) \isacommand{in} t \alert{as}\\ |
|
880 \end{center} |
|
881 |
|
882 |
|
883 \[\mbox{}\hspace{-4mm} |
|
884 \infer[\text{LetRec-}\!\approx_\alpha] |
|
885 {\text{LetRec}\;as\;t \approx_\alpha \text{LetRec}\;as'\;t'} |
|
886 {(\text{bn}(as), (t, as)) \approx\!\makebox[0mm][l]{${}_{\text{list}}$} |
|
887 ^{R,\text{fv}} (\text{bn}(as'), (t', as'))} |
|
888 \]\bigskip |
|
889 |
|
890 \onslide<1->{\alert{deep recursive binders}} |
|
891 \end{frame}} |
|
892 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
893 *} |
|
894 |
|
895 text_raw {* |
|
896 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
897 \mode<presentation>{ |
|
898 \begin{frame}<1-> |
|
899 \frametitle{\begin{tabular}{c}Restrictions\end{tabular}} |
|
900 \mbox{}\\[-6mm] |
|
901 |
|
902 Our restrictions on binding specifications: |
|
903 |
|
904 \begin{itemize} |
|
905 \item a body can only occur once in a list of binding clauses\medskip |
|
906 \item you can only have one binding function for a deep binder\medskip |
|
907 \item binding functions can return: the empty set, singletons, unions (similarly for lists) |
|
908 \end{itemize} |
|
909 |
|
910 |
|
911 \end{frame}} |
|
912 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
913 *} |
|
914 |
|
915 text_raw {* |
|
916 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
917 \mode<presentation>{ |
|
918 \begin{frame}<1-> |
|
919 \frametitle{\begin{tabular}{c}Automatic Proofs\end{tabular}} |
|
920 \mbox{}\\[-6mm] |
|
921 |
|
922 \begin{itemize} |
|
923 \item we can show that $\alpha$'s are equivalence relations\medskip |
|
924 \item as a result we can use our quotient package to introduce the type(s) |
|
925 of $\alpha$-equated terms |
|
926 |
|
927 \[ |
|
928 \infer |
|
929 {\text{Lam}\;x\;t \alert{=} \text{Lam}\;x'\;t'} |
|
930 {\only<1>{([x], t) \approx\!\makebox[0mm][l]{${}_{\text{list}}$} |
|
931 ^{=,\text{supp}} ([x'], t')}% |
|
932 \only<2>{[x].t = [x'].t'}} |
|
933 \] |
|
934 |
|
935 |
|
936 \item the properties for support are implied by the properties of $[\_].\_$ |
|
937 \item we can derive strong induction principles |
|
938 \end{itemize} |
|
939 |
|
940 |
|
941 \end{frame}} |
|
942 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
943 *} |
|
944 |
|
945 text_raw {* |
|
946 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
947 \mode<presentation>{ |
|
948 \begin{frame}<1>[t] |
|
949 \frametitle{\begin{tabular}{c}Runtime is Acceptable\end{tabular}} |
|
950 \mbox{}\\[-7mm]\mbox{} |
|
951 |
|
952 \footnotesize |
|
953 \begin{center} |
|
954 \begin{tikzpicture} |
|
955 \draw (0,0) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm] |
|
956 (A) {\begin{minipage}{0.8cm}bind.\\spec.\end{minipage}}; |
|
957 |
|
958 \draw (2,0) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm] |
|
959 (B) {\begin{minipage}{0.8cm}raw\\terms\end{minipage}}; |
|
960 |
|
961 \draw (4,0) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm] |
|
962 (C) {\begin{minipage}{0.8cm}$\alpha$-\\equiv.\end{minipage}}; |
|
963 |
|
964 \draw (0,-2) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm] |
|
965 (D) {\begin{minipage}{0.8cm}quot.\\type\end{minipage}}; |
|
966 |
|
967 \draw (2,-2) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm] |
|
968 (E) {\begin{minipage}{0.8cm}lift\\thms\end{minipage}}; |
|
969 |
|
970 \draw (4,-2) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm] |
|
971 (F) {\begin{minipage}{0.8cm}add.\\thms\end{minipage}}; |
|
972 |
|
973 \draw[->,fg!50,line width=1mm] (A) -- (B); |
|
974 \draw[->,fg!50,line width=1mm] (B) -- (C); |
|
975 \draw[->,fg!50,line width=1mm, line join=round, rounded corners=2mm] |
|
976 (C) -- (5,0) -- (5,-1) -- (-1,-1) -- (-1,-2) -- (D); |
|
977 \draw[->,fg!50,line width=1mm] (D) -- (E); |
|
978 \draw[->,fg!50,line width=1mm] (E) -- (F); |
|
979 \end{tikzpicture} |
|
980 \end{center} |
|
981 |
|
982 \begin{itemize} |
|
983 \item Core Haskell: 11 types, 49 term-constructors, 7 binding functions |
|
984 \begin{center} |
|
985 $\sim$ 2 mins |
|
986 \end{center} |
|
987 \end{itemize} |
|
988 |
|
989 \end{frame}} |
|
990 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
991 *} |
|
992 |
|
993 |
|
994 text_raw {* |
|
995 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
996 \mode<presentation>{ |
|
997 \begin{frame}<1-> |
|
998 \frametitle{\begin{tabular}{c}Interesting Phenomenon\end{tabular}} |
|
999 \mbox{}\\[-6mm] |
|
1000 |
|
1001 \small |
|
1002 \mbox{}\hspace{20mm} |
|
1003 \begin{tabular}{ll} |
|
1004 \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\ |
|
1005 \hspace{5mm}\phantom{$|$} Var name\\ |
|
1006 \hspace{5mm}$|$ App trm trm\\ |
|
1007 \hspace{5mm}$|$ Lam x::name t::trm |
|
1008 & \isacommand{bind} x \isacommand{in} t\\ |
|
1009 \hspace{5mm}$|$ Let as::assn t::trm |
|
1010 & \isacommand{bind} bn(as) \isacommand{in} t\\ |
|
1011 \multicolumn{2}{l}{\isacommand{and} assn $=$}\\ |
|
1012 \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\ |
|
1013 \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\ |
|
1014 \multicolumn{2}{l}{\isacommand{binder} bn \isacommand{where}}\\ |
|
1015 \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\ |
|
1016 \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\ |
|
1017 \end{tabular}\bigskip\medskip |
|
1018 |
|
1019 we cannot quotient assn: ACons a \ldots $\not\approx_\alpha$ ACons b \ldots |
|
1020 |
|
1021 \only<1->{ |
|
1022 \begin{textblock}{8}(0.2,7.3) |
|
1023 \alert{\begin{tabular}{p{2.6cm}} |
|
1024 \raggedright\footnotesize{}Should a ``naked'' assn be quotient? |
|
1025 \end{tabular}\hspace{-3mm} |
|
1026 $\begin{cases} |
|
1027 \mbox{} \\ \mbox{} |
|
1028 \end{cases}$} |
|
1029 \end{textblock}} |
|
1030 \end{frame}} |
|
1031 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1032 *} |
|
1033 |
|
1034 text_raw {* |
|
1035 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1036 \mode<presentation>{ |
|
1037 \begin{frame}<1-> |
|
1038 \frametitle{\begin{tabular}{c}Conclusion\end{tabular}} |
|
1039 \mbox{}\\[-6mm] |
|
1040 |
|
1041 \begin{itemize} |
|
1042 \item the user does not see anything of the raw level\medskip |
|
1043 \only<1>{\begin{center} |
|
1044 Lam a (Var a) \alert{$=$} Lam b (Var b) |
|
1045 \end{center}\bigskip} |
|
1046 |
|
1047 \item<2-> we have not yet done function definitions (will come soon and |
|
1048 we hope to make improvements over the old way there too)\medskip |
|
1049 \item<3-> it took quite some time to get here, but it seems worthwhile |
|
1050 (Barendregt's variable convention is unsound in general, |
|
1051 found bugs in two paper proofs, quotient package, POPL 2011 tutorial)\medskip |
|
1052 \end{itemize} |
|
1053 |
|
1054 |
|
1055 \end{frame}} |
|
1056 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1057 *} |
|
1058 |
|
1059 text_raw {* |
|
1060 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1061 \mode<presentation>{ |
|
1062 \begin{frame}<1->[c] |
|
1063 \frametitle{\begin{tabular}{c}Future Work\end{tabular}} |
|
1064 \mbox{}\\[-6mm] |
|
1065 |
|
1066 \begin{itemize} |
|
1067 \item Function definitions |
|
1068 \end{itemize} |
|
1069 |
|
1070 \end{frame}} |
|
1071 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1072 *} |
|
1073 |
|
1074 |
|
1075 text_raw {* |
|
1076 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1077 \mode<presentation>{ |
|
1078 \begin{frame}<1->[c] |
|
1079 \frametitle{\begin{tabular}{c}Questions?\end{tabular}} |
|
1080 \mbox{}\\[-6mm] |
|
1081 |
|
1082 \begin{center} |
|
1083 \alert{\huge{Thanks!}} |
|
1084 \end{center} |
|
1085 |
|
1086 \end{frame}} |
|
1087 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1088 *} |
|
1089 |
|
1090 |
|
1091 |
|
1092 text_raw {* |
|
1093 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1094 \mode<presentation>{ |
|
1095 \begin{frame}<1-2>[c] |
|
1096 \frametitle{\begin{tabular}{c}Examples\end{tabular}} |
|
1097 \mbox{}\\[-6mm] |
|
1098 |
|
1099 \begin{center} |
|
1100 $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, a \rightarrow b)$ |
|
1101 $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, b \rightarrow a)$ |
|
1102 \end{center} |
|
1103 |
|
1104 \begin{center} |
|
1105 $(\{a,b\}, (a \rightarrow b, a \rightarrow b))$\\ |
|
1106 \hspace{17mm}$\not\approx_\alpha (\{a, b\}, (a \rightarrow b, b \rightarrow a))$ |
|
1107 \end{center} |
|
1108 |
|
1109 \onslide<2-> |
|
1110 {1.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$, |
|
1111 \isacommand{bind (set)} as \isacommand{in} $\tau_2$\medskip |
|
1112 |
|
1113 2.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$ $\tau_2$ |
|
1114 } |
|
1115 |
|
1116 \end{frame}} |
|
1117 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1118 *} |
|
1119 |
|
1120 (*<*) |
|
1121 end |
|
1122 (*>*) |