|
1 (*<*) |
|
2 theory Appendix |
|
3 imports "../Nominal/Nominal2" "~~/src/HOL/Library/LaTeXsugar" |
|
4 begin |
|
5 |
|
6 consts |
|
7 fv :: "'a \<Rightarrow> 'b" |
|
8 abs_set :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" |
|
9 alpha_bn :: "'a \<Rightarrow> 'a \<Rightarrow> bool" |
|
10 abs_set2 :: "'a \<Rightarrow> perm \<Rightarrow> 'b \<Rightarrow> 'c" |
|
11 Abs_dist :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" |
|
12 Abs_print :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" |
|
13 |
|
14 definition |
|
15 "equal \<equiv> (op =)" |
|
16 |
|
17 notation (latex output) |
|
18 swap ("'(_ _')" [1000, 1000] 1000) and |
|
19 fresh ("_ # _" [51, 51] 50) and |
|
20 fresh_star ("_ #\<^sup>* _" [51, 51] 50) and |
|
21 supp ("supp _" [78] 73) and |
|
22 uminus ("-_" [78] 73) and |
|
23 If ("if _ then _ else _" 10) and |
|
24 alpha_set ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{set}}$}}>\<^bsup>_, _, _\<^esup> _") and |
|
25 alpha_lst ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{list}}$}}>\<^bsup>_, _, _\<^esup> _") and |
|
26 alpha_res ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{res}}$}}>\<^bsup>_, _, _\<^esup> _") and |
|
27 abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and |
|
28 abs_set2 ("_ \<approx>\<^raw:\raisebox{-1pt}{\makebox[0mm][l]{$\,_{\textit{list}}$}}>\<^bsup>_\<^esup> _") and |
|
29 fv ("fa'(_')" [100] 100) and |
|
30 equal ("=") and |
|
31 alpha_abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and |
|
32 Abs_set ("[_]\<^bsub>set\<^esub>._" [20, 101] 999) and |
|
33 Abs_lst ("[_]\<^bsub>list\<^esub>._") and |
|
34 Abs_dist ("[_]\<^bsub>#list\<^esub>._") and |
|
35 Abs_res ("[_]\<^bsub>res\<^esub>._") and |
|
36 Abs_print ("_\<^bsub>set\<^esub>._") and |
|
37 Cons ("_::_" [78,77] 73) and |
|
38 supp_set ("aux _" [1000] 10) and |
|
39 alpha_bn ("_ \<approx>bn _") |
|
40 |
|
41 consts alpha_trm ::'a |
|
42 consts fa_trm :: 'a |
|
43 consts alpha_trm2 ::'a |
|
44 consts fa_trm2 :: 'a |
|
45 consts ast :: 'a |
|
46 consts ast' :: 'a |
|
47 notation (latex output) |
|
48 alpha_trm ("\<approx>\<^bsub>trm\<^esub>") and |
|
49 fa_trm ("fa\<^bsub>trm\<^esub>") and |
|
50 alpha_trm2 ("'(\<approx>\<^bsub>assn\<^esub>, \<approx>\<^bsub>trm\<^esub>')") and |
|
51 fa_trm2 ("'(fa\<^bsub>assn\<^esub>, fa\<^bsub>trm\<^esub>')") and |
|
52 ast ("'(as, t')") and |
|
53 ast' ("'(as', t\<PRIME> ')") |
|
54 |
|
55 (*>*) |
|
56 |
|
57 text {* |
|
58 \appendix |
|
59 \section*{Appendix} |
|
60 |
|
61 Details for one case in Theorem \ref{suppabs}, which the reader might like to ignore. |
|
62 By definition of the abstraction type @{text "abs_set"} |
|
63 we have |
|
64 % |
|
65 \begin{equation}\label{abseqiff} |
|
66 @{thm (lhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} \;\;\text{if and only if}\;\; |
|
67 @{thm (rhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} |
|
68 \end{equation} |
|
69 |
|
70 \noindent |
|
71 and also |
|
72 |
|
73 \begin{equation}\label{absperm} |
|
74 @{thm permute_Abs(1)[no_vars]}% |
|
75 \end{equation} |
|
76 |
|
77 \noindent |
|
78 The second fact derives from the definition of permutations acting on pairs |
|
79 and $\alpha$-equivalence being equivariant. With these two facts at our disposal, we can show |
|
80 the following lemma about swapping two atoms in an abstraction. |
|
81 |
|
82 \begin{lemma} |
|
83 @{thm[mode=IfThen] Abs_swap1(1)[where bs="as", no_vars]} |
|
84 \end{lemma} |
|
85 |
|
86 \begin{proof} |
|
87 This lemma is straightforward using \eqref{abseqiff} and observing that |
|
88 the assumptions give us @{term "(a \<rightleftharpoons> b) \<bullet> (supp x - as) = (supp x - as)"}. |
|
89 Moreover @{text supp} and set difference are equivariant (see \cite{HuffmanUrban10}). |
|
90 \end{proof} |
|
91 |
|
92 \noindent |
|
93 Assuming that @{text "x"} has finite support, this lemma together |
|
94 with \eqref{absperm} allows us to show |
|
95 |
|
96 \begin{equation}\label{halfone} |
|
97 @{thm Abs_supports(1)[no_vars]} |
|
98 \end{equation} |
|
99 |
|
100 \noindent |
|
101 which gives us ``one half'' of |
|
102 Theorem~\ref{suppabs} (the notion of supports is defined in \cite{HuffmanUrban10}). |
|
103 The ``other half'' is a bit more involved. To establish |
|
104 it, we use a trick from \cite{Pitts04} and first define an auxiliary |
|
105 function @{text aux}, taking an abstraction as argument: |
|
106 @{thm supp_set.simps[THEN eq_reflection, no_vars]}. |
|
107 |
|
108 We can show that |
|
109 @{text "aux"} is equivariant (since @{term "p \<bullet> (supp x - as) = (supp (p \<bullet> x)) - (p \<bullet> as)"}) |
|
110 and therefore has empty support. |
|
111 This in turn means |
|
112 |
|
113 \begin{center} |
|
114 @{text "supp (aux ([as]\<^bsub>set\<^esub>. x)) \<subseteq> supp ([as]\<^bsub>set\<^esub> x)"} |
|
115 \end{center} |
|
116 |
|
117 \noindent |
|
118 Assuming @{term "supp x - as"} is a finite set, |
|
119 we further obtain |
|
120 |
|
121 \begin{equation}\label{halftwo} |
|
122 @{thm (concl) Abs_supp_subset1(1)[no_vars]} |
|
123 \end{equation} |
|
124 |
|
125 \noindent |
|
126 since for finite sets of atoms, @{text "bs"}, we have |
|
127 @{thm (concl) supp_finite_atom_set[where S="bs", no_vars]}. |
|
128 Finally, taking \eqref{halfone} and \eqref{halftwo} together establishes |
|
129 Theorem~\ref{suppabs}. |
|
130 |
|
131 *} |
|
132 |
|
133 (*<*) |
|
134 end |
|
135 (*>*) |