Nominal/Nominal2_Base.thy
changeset 2573 6c131c089ce2
parent 2568 8193bbaa07fe
child 2586 3ebc7ecfb0dd
equal deleted inserted replaced
2572:73196608ec04 2573:6c131c089ce2
  1577 apply(simp add: fresh_star_prod)
  1577 apply(simp add: fresh_star_prod)
  1578 apply(rule fresh_star_supp_conv)
  1578 apply(rule fresh_star_supp_conv)
  1579 apply(auto simp add: fresh_star_def)
  1579 apply(auto simp add: fresh_star_def)
  1580 done
  1580 done
  1581 
  1581 
       
  1582 lemma at_set_avoiding3:
       
  1583   assumes "finite xs"
       
  1584   and     "finite (supp c)" "finite (supp x)"
       
  1585   and     "xs \<sharp>* x"
       
  1586   shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> x = p \<bullet> x"
       
  1587 using at_set_avoiding2[OF assms]
       
  1588 by (auto simp add: supp_perm_eq)
       
  1589 
       
  1590 
  1582 lemma at_set_avoiding2_atom:
  1591 lemma at_set_avoiding2_atom:
  1583   assumes "finite (supp c)" "finite (supp x)"
  1592   assumes "finite (supp c)" "finite (supp x)"
  1584   and     b: "a \<sharp> x"
  1593   and     b: "a \<sharp> x"
  1585   shows "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p"
  1594   shows "\<exists>p. (p \<bullet> a) \<sharp> c \<and> supp x \<sharp>* p"
  1586 proof -
  1595 proof -