IntEx.thy
changeset 514 6b3be083229c
parent 506 91c374abde06
child 529 6348c2a57ec2
equal deleted inserted replaced
513:eed5d55ea9a6 514:6b3be083229c
    10 
    10 
    11 quotient my_int = "nat \<times> nat" / intrel
    11 quotient my_int = "nat \<times> nat" / intrel
    12   apply(unfold EQUIV_def)
    12   apply(unfold EQUIV_def)
    13   apply(auto simp add: mem_def expand_fun_eq)
    13   apply(auto simp add: mem_def expand_fun_eq)
    14   done
    14   done
       
    15 
       
    16 thm quotient_thm
    15 
    17 
    16 thm my_int_equiv
    18 thm my_int_equiv
    17 
    19 
    18 print_theorems
    20 print_theorems
    19 print_quotients
    21 print_quotients
   127   apply(cases a)
   129   apply(cases a)
   128   apply(cases b)
   130   apply(cases b)
   129   apply(auto)
   131   apply(auto)
   130   done
   132   done
   131 
   133 
   132 lemma ho_plus_rsp[quot_rsp]:
   134 lemma ho_plus_rsp[quotient_rsp]:
   133   shows "(intrel ===> intrel ===> intrel) my_plus my_plus"
   135   shows "(intrel ===> intrel ===> intrel) my_plus my_plus"
   134 by (simp)
   136 by (simp)
   135 
   137 
   136 ML {* val qty = @{typ "my_int"} *}
   138 ML {* val qty = @{typ "my_int"} *}
   137 ML {* val ty_name = "my_int" *}
   139 ML {* val ty_name = "my_int" *}
   138 ML {* val rsp_thms = @{thms ho_plus_rsp} *}
   140 ML {* val rsp_thms = @{thms ho_plus_rsp} *}
   139 ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
   141 ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
   140 ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "my_int"; *}
   142 ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "my_int"; *}
   141 
   143 
   142 ML {* fun lift_tac_intex lthy t = lift_tac lthy t [rel_eqv] [quot] *}
   144 ML {* fun lift_tac_intex lthy t = lift_tac lthy t [rel_eqv] *}
   143 
   145 
   144 ML {* fun inj_repabs_tac_intex lthy = inj_repabs_tac lthy [quot] [rel_refl] [trans2] *}
   146 ML {* fun inj_repabs_tac_intex lthy = inj_repabs_tac lthy [rel_refl] [trans2] *}
   145 ML {* fun all_inj_repabs_tac_intex lthy = all_inj_repabs_tac lthy [quot] [rel_refl] [trans2] *}
   147 ML {* fun all_inj_repabs_tac_intex lthy = all_inj_repabs_tac lthy [rel_refl] [trans2] *}
   146 
   148 
   147 
   149 
   148 lemma "PLUS a b = PLUS b a"
   150 lemma "PLUS a b = PLUS b a"
   149 apply(tactic {* procedure_tac @{context} @{thm plus_sym_pre} 1 *})
   151 apply(tactic {* procedure_tac @{context} @{thm plus_sym_pre} 1 *})
   150 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   152 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   151 prefer 2
   153 prefer 2
   152 apply(tactic {* clean_tac @{context} [quot] 1 *})
   154 apply(tactic {* clean_tac @{context} 1 *})
   153 apply(tactic {* inj_repabs_tac_intex @{context} 1*})
   155 apply(tactic {* inj_repabs_tac_intex @{context} 1*})
   154 apply(tactic {* inj_repabs_tac_intex @{context} 1*})
   156 apply(tactic {* inj_repabs_tac_intex @{context} 1*})
   155 apply(tactic {* inj_repabs_tac_intex @{context} 1*})
   157 apply(tactic {* inj_repabs_tac_intex @{context} 1*})
   156 apply(tactic {* inj_repabs_tac_intex @{context} 1*})
   158 apply(tactic {* inj_repabs_tac_intex @{context} 1*})
   157 apply(tactic {* inj_repabs_tac_intex @{context} 1*})
   159 apply(tactic {* inj_repabs_tac_intex @{context} 1*})
   185 
   187 
   186 lemma plus_assoc: "PLUS (PLUS x xa) xb = PLUS x (PLUS xa xb)"
   188 lemma plus_assoc: "PLUS (PLUS x xa) xb = PLUS x (PLUS xa xb)"
   187 apply(tactic {* procedure_tac @{context} @{thm plus_assoc_pre} 1 *})
   189 apply(tactic {* procedure_tac @{context} @{thm plus_assoc_pre} 1 *})
   188 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   190 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   189 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
   191 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
   190 apply(tactic {* clean_tac @{context} [quot] 1 *})
   192 apply(tactic {* clean_tac @{context} 1 *})
   191 done
   193 done
   192 
   194 
   193 lemma ho_tst: "foldl my_plus x [] = x"
   195 lemma ho_tst: "foldl my_plus x [] = x"
   194 apply simp
   196 apply simp
   195 done
   197 done
   232   assumes a: "QUOTIENT R1 abs1 rep1"
   234   assumes a: "QUOTIENT R1 abs1 rep1"
   233   shows "(map abs1) ((rep1 h) # (map rep1 t)) = h # t"
   235   shows "(map abs1) ((rep1 h) # (map rep1 t)) = h # t"
   234   apply (induct t)
   236   apply (induct t)
   235 by (simp_all add: QUOTIENT_ABS_REP[OF a])
   237 by (simp_all add: QUOTIENT_ABS_REP[OF a])
   236 
   238 
   237 lemma cons_rsp[quot_rsp]:
   239 lemma cons_rsp[quotient_rsp]:
   238   "(op \<approx> ===> LIST_REL op \<approx> ===> LIST_REL op \<approx>) op # op #"
   240   "(op \<approx> ===> LIST_REL op \<approx> ===> LIST_REL op \<approx>) op # op #"
   239 by simp
   241 by simp
   240 
   242 
   241 (* I believe it's true. *)
   243 (* I believe it's true. *)
   242 lemma foldl_rsp[quot_rsp]:
   244 lemma foldl_rsp[quotient_rsp]:
   243   "((op \<approx> ===> op \<approx> ===> op \<approx>) ===> op \<approx> ===> LIST_REL op \<approx> ===> op \<approx>) foldl foldl"
   245   "((op \<approx> ===> op \<approx> ===> op \<approx>) ===> op \<approx> ===> LIST_REL op \<approx> ===> op \<approx>) foldl foldl"
   244 apply (simp only: FUN_REL.simps)
   246 apply (simp only: FUN_REL.simps)
   245 apply (rule allI)
   247 apply (rule allI)
   246 apply (rule allI)
   248 apply (rule allI)
   247 apply (rule impI)
   249 apply (rule impI)
   252 apply (rule allI)
   254 apply (rule allI)
   253 apply (rule impI)
   255 apply (rule impI)
   254 apply (induct_tac xb yb rule: list_induct2) (* To finish I need to give it: arbitrary:xa ya *)
   256 apply (induct_tac xb yb rule: list_induct2) (* To finish I need to give it: arbitrary:xa ya *)
   255 sorry
   257 sorry
   256 
   258 
   257 lemma nil_listrel_rsp[quot_rsp]:
   259 lemma nil_listrel_rsp[quotient_rsp]:
   258   "(LIST_REL R) [] []"
   260   "(LIST_REL R) [] []"
   259 by simp
   261 by simp
   260 
       
   261 thm LAMBDA_PRS[no_vars]
       
   262 thm all_prs[no_vars]
       
   263 
       
   264 lemma test_all_prs:
       
   265   "\<lbrakk>QUOTIENT R absf repf; f = g\<rbrakk> \<Longrightarrow> Ball (Respects R) ((absf ---> id) f) = All g"
       
   266 apply(drule all_prs)
       
   267 apply(simp)
       
   268 done
       
   269 
       
   270 lemma test:
       
   271   "\<lbrakk>QUOTIENT R1 Abs1 Rep1; QUOTIENT R2 Abs2 Rep2; 
       
   272     (\<lambda>x. Rep2 (f (Abs1 x))) = lhs \<rbrakk> \<Longrightarrow> (Rep1 ---> Abs2) lhs = f"
       
   273 apply -
       
   274 thm LAMBDA_PRS
       
   275 apply(drule LAMBDA_PRS)
       
   276 apply(assumption)
       
   277 apply(auto)
       
   278 done
       
   279 
       
   280 
   262 
   281 lemma "foldl PLUS x [] = x"
   263 lemma "foldl PLUS x [] = x"
   282 apply(tactic {* procedure_tac @{context} @{thm ho_tst} 1 *})
   264 apply(tactic {* procedure_tac @{context} @{thm ho_tst} 1 *})
   283 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   265 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   284 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
   266 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
   285 apply(simp only: foldl_prs[OF QUOTIENT_my_int QUOTIENT_my_int])
   267 apply(simp only: foldl_prs[OF QUOTIENT_my_int QUOTIENT_my_int])
   286 apply(simp only: nil_prs)
   268 apply(simp only: nil_prs)
   287 apply(tactic {* clean_tac @{context} [quot] 1 *})
   269 apply(tactic {* clean_tac @{context} 1 *})
   288 done
   270 done
   289 
   271 
   290 lemma ho_tst2: "foldl my_plus x (h # t) \<approx> my_plus h (foldl my_plus x t)"
   272 lemma ho_tst2: "foldl my_plus x (h # t) \<approx> my_plus h (foldl my_plus x t)"
   291 sorry
   273 sorry
   292 
   274 
   294 apply(tactic {* procedure_tac @{context} @{thm ho_tst2} 1 *})
   276 apply(tactic {* procedure_tac @{context} @{thm ho_tst2} 1 *})
   295 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   277 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
   296 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
   278 apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
   297 apply(simp only: foldl_prs[OF QUOTIENT_my_int QUOTIENT_my_int])
   279 apply(simp only: foldl_prs[OF QUOTIENT_my_int QUOTIENT_my_int])
   298 apply(simp only: cons_prs[OF QUOTIENT_my_int])
   280 apply(simp only: cons_prs[OF QUOTIENT_my_int])
   299 apply(tactic {* clean_tac @{context} [quot] 1 *})
   281 apply(tactic {* clean_tac @{context} 1 *})
   300 done
   282 done
   301 
   283