1 (* Title: Nominal2_Atoms |
|
2 Authors: Brian Huffman, Christian Urban |
|
3 |
|
4 Definitions for concrete atom types. |
|
5 *) |
|
6 theory Nominal2_Atoms |
|
7 imports Nominal2_Base |
|
8 Nominal2_Eqvt |
|
9 uses ("nominal_atoms.ML") |
|
10 begin |
|
11 |
|
12 section {* Infrastructure for concrete atom types *} |
|
13 |
|
14 |
|
15 section {* A swapping operation for concrete atoms *} |
|
16 |
|
17 definition |
|
18 flip :: "'a::at_base \<Rightarrow> 'a \<Rightarrow> perm" ("'(_ \<leftrightarrow> _')") |
|
19 where |
|
20 "(a \<leftrightarrow> b) = (atom a \<rightleftharpoons> atom b)" |
|
21 |
|
22 lemma flip_self [simp]: "(a \<leftrightarrow> a) = 0" |
|
23 unfolding flip_def by (rule swap_self) |
|
24 |
|
25 lemma flip_commute: "(a \<leftrightarrow> b) = (b \<leftrightarrow> a)" |
|
26 unfolding flip_def by (rule swap_commute) |
|
27 |
|
28 lemma minus_flip [simp]: "- (a \<leftrightarrow> b) = (a \<leftrightarrow> b)" |
|
29 unfolding flip_def by (rule minus_swap) |
|
30 |
|
31 lemma add_flip_cancel: "(a \<leftrightarrow> b) + (a \<leftrightarrow> b) = 0" |
|
32 unfolding flip_def by (rule swap_cancel) |
|
33 |
|
34 lemma permute_flip_cancel [simp]: "(a \<leftrightarrow> b) \<bullet> (a \<leftrightarrow> b) \<bullet> x = x" |
|
35 unfolding permute_plus [symmetric] add_flip_cancel by simp |
|
36 |
|
37 lemma permute_flip_cancel2 [simp]: "(a \<leftrightarrow> b) \<bullet> (b \<leftrightarrow> a) \<bullet> x = x" |
|
38 by (simp add: flip_commute) |
|
39 |
|
40 lemma flip_eqvt[eqvt]: |
|
41 fixes a b c::"'a::at_base" |
|
42 shows "p \<bullet> (a \<leftrightarrow> b) = (p \<bullet> a \<leftrightarrow> p \<bullet> b)" |
|
43 unfolding flip_def |
|
44 by (simp add: swap_eqvt atom_eqvt) |
|
45 |
|
46 lemma flip_at_base_simps [simp]: |
|
47 shows "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> a = b" |
|
48 and "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> b = a" |
|
49 and "\<lbrakk>a \<noteq> c; b \<noteq> c\<rbrakk> \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> c = c" |
|
50 and "sort_of (atom a) \<noteq> sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> x = x" |
|
51 unfolding flip_def |
|
52 unfolding atom_eq_iff [symmetric] |
|
53 unfolding atom_eqvt [symmetric] |
|
54 by simp_all |
|
55 |
|
56 text {* the following two lemmas do not hold for at_base, |
|
57 only for single sort atoms from at *} |
|
58 |
|
59 lemma permute_flip_at: |
|
60 fixes a b c::"'a::at" |
|
61 shows "(a \<leftrightarrow> b) \<bullet> c = (if c = a then b else if c = b then a else c)" |
|
62 unfolding flip_def |
|
63 apply (rule atom_eq_iff [THEN iffD1]) |
|
64 apply (subst atom_eqvt [symmetric]) |
|
65 apply (simp add: swap_atom) |
|
66 done |
|
67 |
|
68 lemma flip_at_simps [simp]: |
|
69 fixes a b::"'a::at" |
|
70 shows "(a \<leftrightarrow> b) \<bullet> a = b" |
|
71 and "(a \<leftrightarrow> b) \<bullet> b = a" |
|
72 unfolding permute_flip_at by simp_all |
|
73 |
|
74 lemma flip_fresh_fresh: |
|
75 fixes a b::"'a::at_base" |
|
76 assumes "atom a \<sharp> x" "atom b \<sharp> x" |
|
77 shows "(a \<leftrightarrow> b) \<bullet> x = x" |
|
78 using assms |
|
79 by (simp add: flip_def swap_fresh_fresh) |
|
80 |
|
81 subsection {* Syntax for coercing at-elements to the atom-type *} |
|
82 |
|
83 syntax |
|
84 "_atom_constrain" :: "logic \<Rightarrow> type \<Rightarrow> logic" ("_:::_" [4, 0] 3) |
|
85 |
|
86 translations |
|
87 "_atom_constrain a t" => "CONST atom (_constrain a t)" |
|
88 |
|
89 |
|
90 subsection {* A lemma for proving instances of class @{text at}. *} |
|
91 |
|
92 setup {* Sign.add_const_constraint (@{const_name "permute"}, NONE) *} |
|
93 setup {* Sign.add_const_constraint (@{const_name "atom"}, NONE) *} |
|
94 |
|
95 text {* |
|
96 New atom types are defined as subtypes of @{typ atom}. |
|
97 *} |
|
98 |
|
99 lemma exists_eq_simple_sort: |
|
100 shows "\<exists>a. a \<in> {a. sort_of a = s}" |
|
101 by (rule_tac x="Atom s 0" in exI, simp) |
|
102 |
|
103 lemma exists_eq_sort: |
|
104 shows "\<exists>a. a \<in> {a. sort_of a \<in> range sort_fun}" |
|
105 by (rule_tac x="Atom (sort_fun x) y" in exI, simp) |
|
106 |
|
107 lemma at_base_class: |
|
108 fixes sort_fun :: "'b \<Rightarrow>atom_sort" |
|
109 fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a" |
|
110 assumes type: "type_definition Rep Abs {a. sort_of a \<in> range sort_fun}" |
|
111 assumes atom_def: "\<And>a. atom a = Rep a" |
|
112 assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)" |
|
113 shows "OFCLASS('a, at_base_class)" |
|
114 proof |
|
115 interpret type_definition Rep Abs "{a. sort_of a \<in> range sort_fun}" by (rule type) |
|
116 have sort_of_Rep: "\<And>a. sort_of (Rep a) \<in> range sort_fun" using Rep by simp |
|
117 fix a b :: 'a and p p1 p2 :: perm |
|
118 show "0 \<bullet> a = a" |
|
119 unfolding permute_def by (simp add: Rep_inverse) |
|
120 show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a" |
|
121 unfolding permute_def by (simp add: Abs_inverse sort_of_Rep) |
|
122 show "atom a = atom b \<longleftrightarrow> a = b" |
|
123 unfolding atom_def by (simp add: Rep_inject) |
|
124 show "p \<bullet> atom a = atom (p \<bullet> a)" |
|
125 unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep) |
|
126 qed |
|
127 |
|
128 (* |
|
129 lemma at_class: |
|
130 fixes s :: atom_sort |
|
131 fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a" |
|
132 assumes type: "type_definition Rep Abs {a. sort_of a \<in> range (\<lambda>x::unit. s)}" |
|
133 assumes atom_def: "\<And>a. atom a = Rep a" |
|
134 assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)" |
|
135 shows "OFCLASS('a, at_class)" |
|
136 proof |
|
137 interpret type_definition Rep Abs "{a. sort_of a \<in> range (\<lambda>x::unit. s)}" by (rule type) |
|
138 have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def) |
|
139 fix a b :: 'a and p p1 p2 :: perm |
|
140 show "0 \<bullet> a = a" |
|
141 unfolding permute_def by (simp add: Rep_inverse) |
|
142 show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a" |
|
143 unfolding permute_def by (simp add: Abs_inverse sort_of_Rep) |
|
144 show "sort_of (atom a) = sort_of (atom b)" |
|
145 unfolding atom_def by (simp add: sort_of_Rep) |
|
146 show "atom a = atom b \<longleftrightarrow> a = b" |
|
147 unfolding atom_def by (simp add: Rep_inject) |
|
148 show "p \<bullet> atom a = atom (p \<bullet> a)" |
|
149 unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep) |
|
150 qed |
|
151 *) |
|
152 |
|
153 lemma at_class: |
|
154 fixes s :: atom_sort |
|
155 fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a" |
|
156 assumes type: "type_definition Rep Abs {a. sort_of a = s}" |
|
157 assumes atom_def: "\<And>a. atom a = Rep a" |
|
158 assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)" |
|
159 shows "OFCLASS('a, at_class)" |
|
160 proof |
|
161 interpret type_definition Rep Abs "{a. sort_of a = s}" by (rule type) |
|
162 have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by (simp add: image_def) |
|
163 fix a b :: 'a and p p1 p2 :: perm |
|
164 show "0 \<bullet> a = a" |
|
165 unfolding permute_def by (simp add: Rep_inverse) |
|
166 show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a" |
|
167 unfolding permute_def by (simp add: Abs_inverse sort_of_Rep) |
|
168 show "sort_of (atom a) = sort_of (atom b)" |
|
169 unfolding atom_def by (simp add: sort_of_Rep) |
|
170 show "atom a = atom b \<longleftrightarrow> a = b" |
|
171 unfolding atom_def by (simp add: Rep_inject) |
|
172 show "p \<bullet> atom a = atom (p \<bullet> a)" |
|
173 unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep) |
|
174 qed |
|
175 |
|
176 setup {* Sign.add_const_constraint |
|
177 (@{const_name "permute"}, SOME @{typ "perm \<Rightarrow> 'a::pt \<Rightarrow> 'a"}) *} |
|
178 setup {* Sign.add_const_constraint |
|
179 (@{const_name "atom"}, SOME @{typ "'a::at_base \<Rightarrow> atom"}) *} |
|
180 |
|
181 section {* Automation for creating concrete atom types *} |
|
182 |
|
183 text {* at the moment only single-sort concrete atoms are supported *} |
|
184 |
|
185 use "nominal_atoms.ML" |
|
186 |
|
187 |
|
188 end |
|