equal
deleted
inserted
replaced
413 apply(simp add: fresh_star_def fresh_def) |
413 apply(simp add: fresh_star_def fresh_def) |
414 apply(blast) |
414 apply(blast) |
415 apply(simp add: supp_swap) |
415 apply(simp add: supp_swap) |
416 done |
416 done |
417 |
417 |
418 (* |
418 |
419 thm supp_perm |
419 thm supp_perm |
420 |
420 |
|
421 (* |
421 lemma perm_induct_test: |
422 lemma perm_induct_test: |
422 fixes P :: "perm => bool" |
423 fixes P :: "perm => bool" |
423 assumes zero: "P 0" |
424 assumes zero: "P 0" |
424 assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)" |
425 assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)" |
425 assumes plus: "\<And>p1 p2. \<lbrakk>supp (p1 + p2) = (supp p1 \<union> supp p2); P p1; P p2\<rbrakk> \<Longrightarrow> P (p1 + p2)" |
426 assumes plus: "\<And>p1 p2. \<lbrakk>supp (p1 + p2) = (supp p1 \<union> supp p2); P p1; P p2\<rbrakk> \<Longrightarrow> P (p1 + p2)" |