Nominal/Nominal2_Eqvt.thy
changeset 2635 64b4cb2c2bf8
parent 2591 35c570891a3a
child 2642 f338b455314c
equal deleted inserted replaced
2634:3ce1089cdbf3 2635:64b4cb2c2bf8
    22 
    22 
    23 
    23 
    24 section {* eqvt lemmas *}
    24 section {* eqvt lemmas *}
    25 
    25 
    26 lemmas [eqvt] =
    26 lemmas [eqvt] =
    27   conj_eqvt Not_eqvt ex_eqvt all_eqvt imp_eqvt
    27   conj_eqvt Not_eqvt ex_eqvt all_eqvt imp_eqvt uminus_eqvt
    28   imp_eqvt[folded induct_implies_def]
    28   imp_eqvt[folded induct_implies_def]
    29   uminus_eqvt
    29   all_eqvt[folded induct_forall_def]
    30 
    30 
    31   (* nominal *)
    31   (* nominal *)
    32   supp_eqvt fresh_eqvt fresh_star_eqvt add_perm_eqvt atom_eqvt 
    32   supp_eqvt fresh_eqvt fresh_star_eqvt add_perm_eqvt atom_eqvt 
    33   swap_eqvt flip_eqvt
    33   swap_eqvt flip_eqvt
    34 
    34 
    38   (* sets *)
    38   (* sets *)
    39   mem_eqvt empty_eqvt insert_eqvt set_eqvt
    39   mem_eqvt empty_eqvt insert_eqvt set_eqvt
    40 
    40 
    41   (* fsets *)
    41   (* fsets *)
    42   permute_fset fset_eqvt
    42   permute_fset fset_eqvt
       
    43 
    43 
    44 
    44 text {* helper lemmas for the perm_simp *}
    45 text {* helper lemmas for the perm_simp *}
    45 
    46 
    46 definition
    47 definition
    47   "unpermute p = permute (- p)"
    48   "unpermute p = permute (- p)"