1 (* Title: Nominal2_Eqvt |
1 (* Title: Nominal2_Eqvt |
2 Author: Brian Huffman, |
2 Author: Brian Huffman, |
3 Author: Christian Urban |
3 Author: Christian Urban |
4 |
4 |
5 Equivariance, supp and freshness lemmas for various operators |
5 Test cases for perm_simp |
6 (contains many, but not all such lemmas). |
|
7 *) |
6 *) |
8 theory Nominal2_Eqvt |
7 theory Nominal2_Eqvt |
9 imports Nominal2_Base |
8 imports Nominal2_Base |
10 uses ("nominal_thmdecls.ML") |
|
11 ("nominal_permeq.ML") |
|
12 ("nominal_eqvt.ML") |
|
13 begin |
9 begin |
14 |
|
15 |
|
16 section {* Permsimp and Eqvt infrastructure *} |
|
17 |
|
18 text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_raw} *} |
|
19 |
|
20 use "nominal_thmdecls.ML" |
|
21 setup "Nominal_ThmDecls.setup" |
|
22 |
|
23 |
|
24 section {* eqvt lemmas *} |
|
25 |
|
26 lemmas [eqvt] = |
|
27 conj_eqvt Not_eqvt ex_eqvt all_eqvt ex1_eqvt imp_eqvt uminus_eqvt |
|
28 imp_eqvt[folded induct_implies_def] |
|
29 all_eqvt[folded induct_forall_def] |
|
30 |
|
31 (* nominal *) |
|
32 supp_eqvt fresh_eqvt fresh_star_eqvt add_perm_eqvt atom_eqvt |
|
33 swap_eqvt flip_eqvt |
|
34 |
|
35 (* datatypes *) |
|
36 Pair_eqvt permute_list.simps permute_option.simps |
|
37 permute_sum.simps |
|
38 |
|
39 (* sets *) |
|
40 mem_eqvt empty_eqvt insert_eqvt set_eqvt inter_eqvt |
|
41 |
|
42 (* fsets *) |
|
43 permute_fset fset_eqvt |
|
44 |
|
45 |
|
46 text {* helper lemmas for the perm_simp *} |
|
47 |
|
48 definition |
|
49 "unpermute p = permute (- p)" |
|
50 |
|
51 lemma eqvt_apply: |
|
52 fixes f :: "'a::pt \<Rightarrow> 'b::pt" |
|
53 and x :: "'a::pt" |
|
54 shows "p \<bullet> (f x) \<equiv> (p \<bullet> f) (p \<bullet> x)" |
|
55 unfolding permute_fun_def by simp |
|
56 |
|
57 lemma eqvt_lambda: |
|
58 fixes f :: "'a::pt \<Rightarrow> 'b::pt" |
|
59 shows "p \<bullet> (\<lambda>x. f x) \<equiv> (\<lambda>x. p \<bullet> (f (unpermute p x)))" |
|
60 unfolding permute_fun_def unpermute_def by simp |
|
61 |
|
62 lemma eqvt_bound: |
|
63 shows "p \<bullet> unpermute p x \<equiv> x" |
|
64 unfolding unpermute_def by simp |
|
65 |
|
66 text {* provides perm_simp methods *} |
|
67 |
|
68 use "nominal_permeq.ML" |
|
69 setup Nominal_Permeq.setup |
|
70 |
|
71 method_setup perm_simp = |
|
72 {* Nominal_Permeq.args_parser >> Nominal_Permeq.perm_simp_meth *} |
|
73 {* pushes permutations inside. *} |
|
74 |
|
75 method_setup perm_strict_simp = |
|
76 {* Nominal_Permeq.args_parser >> Nominal_Permeq.perm_strict_simp_meth *} |
|
77 {* pushes permutations inside, raises an error if it cannot solve all permutations. *} |
|
78 |
|
79 (* the normal version of this lemma would cause loops *) |
|
80 lemma permute_eqvt_raw[eqvt_raw]: |
|
81 shows "p \<bullet> permute \<equiv> permute" |
|
82 apply(simp add: fun_eq_iff permute_fun_def) |
|
83 apply(subst permute_eqvt) |
|
84 apply(simp) |
|
85 done |
|
86 |
|
87 subsection {* Equivariance of Logical Operators *} |
|
88 |
|
89 lemma eq_eqvt[eqvt]: |
|
90 shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)" |
|
91 unfolding permute_eq_iff permute_bool_def .. |
|
92 |
|
93 lemma if_eqvt[eqvt]: |
|
94 shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)" |
|
95 by (simp add: permute_fun_def permute_bool_def) |
|
96 |
|
97 lemma True_eqvt[eqvt]: |
|
98 shows "p \<bullet> True = True" |
|
99 unfolding permute_bool_def .. |
|
100 |
|
101 lemma False_eqvt[eqvt]: |
|
102 shows "p \<bullet> False = False" |
|
103 unfolding permute_bool_def .. |
|
104 |
|
105 lemma disj_eqvt[eqvt]: |
|
106 shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))" |
|
107 by (simp add: permute_bool_def) |
|
108 |
|
109 lemma all_eqvt2: |
|
110 shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))" |
|
111 by (perm_simp add: permute_minus_cancel) (rule refl) |
|
112 |
|
113 lemma ex_eqvt2: |
|
114 shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))" |
|
115 by (perm_simp add: permute_minus_cancel) (rule refl) |
|
116 |
|
117 lemma ex1_eqvt2: |
|
118 shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))" |
|
119 by (perm_simp add: permute_minus_cancel) (rule refl) |
|
120 |
|
121 lemma the_eqvt: |
|
122 assumes unique: "\<exists>!x. P x" |
|
123 shows "(p \<bullet> (THE x. P x)) = (THE x. (p \<bullet> P) x)" |
|
124 apply(rule the1_equality [symmetric]) |
|
125 apply(rule_tac p="-p" in permute_boolE) |
|
126 apply(perm_simp add: permute_minus_cancel) |
|
127 apply(rule unique) |
|
128 apply(rule_tac p="-p" in permute_boolE) |
|
129 apply(perm_simp add: permute_minus_cancel) |
|
130 apply(rule theI'[OF unique]) |
|
131 done |
|
132 |
|
133 lemma the_eqvt2: |
|
134 assumes unique: "\<exists>!x. P x" |
|
135 shows "(p \<bullet> (THE x. P x)) = (THE x. p \<bullet> P (- p \<bullet> x))" |
|
136 apply(rule the1_equality [symmetric]) |
|
137 apply(simp add: ex1_eqvt2[symmetric]) |
|
138 apply(simp add: permute_bool_def unique) |
|
139 apply(simp add: permute_bool_def) |
|
140 apply(rule theI'[OF unique]) |
|
141 done |
|
142 |
|
143 subsection {* Equivariance Set Operations *} |
|
144 |
|
145 lemma not_mem_eqvt: |
|
146 shows "p \<bullet> (x \<notin> A) \<longleftrightarrow> (p \<bullet> x) \<notin> (p \<bullet> A)" |
|
147 by (perm_simp) (rule refl) |
|
148 |
|
149 lemma Collect_eqvt[eqvt]: |
|
150 shows "p \<bullet> {x. P x} = {x. (p \<bullet> P) x}" |
|
151 unfolding Collect_def permute_fun_def .. |
|
152 |
|
153 lemma Collect_eqvt2: |
|
154 shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}" |
|
155 by (perm_simp add: permute_minus_cancel) (rule refl) |
|
156 |
|
157 lemma Bex_eqvt[eqvt]: |
|
158 shows "p \<bullet> (\<exists>x \<in> S. P x) = (\<exists>x \<in> (p \<bullet> S). (p \<bullet> P) x)" |
|
159 unfolding Bex_def |
|
160 by (perm_simp) (rule refl) |
|
161 |
|
162 lemma Ball_eqvt[eqvt]: |
|
163 shows "p \<bullet> (\<forall>x \<in> S. P x) = (\<forall>x \<in> (p \<bullet> S). (p \<bullet> P) x)" |
|
164 unfolding Ball_def |
|
165 by (perm_simp) (rule refl) |
|
166 |
|
167 lemma UNIV_eqvt[eqvt]: |
|
168 shows "p \<bullet> UNIV = UNIV" |
|
169 unfolding UNIV_def |
|
170 by (perm_simp) (rule refl) |
|
171 |
|
172 lemma union_eqvt[eqvt]: |
|
173 shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)" |
|
174 unfolding Un_def |
|
175 by (perm_simp) (rule refl) |
|
176 |
|
177 lemma Diff_eqvt[eqvt]: |
|
178 fixes A B :: "'a::pt set" |
|
179 shows "p \<bullet> (A - B) = p \<bullet> A - p \<bullet> B" |
|
180 unfolding set_diff_eq |
|
181 by (perm_simp) (rule refl) |
|
182 |
|
183 lemma Compl_eqvt[eqvt]: |
|
184 fixes A :: "'a::pt set" |
|
185 shows "p \<bullet> (- A) = - (p \<bullet> A)" |
|
186 unfolding Compl_eq_Diff_UNIV |
|
187 by (perm_simp) (rule refl) |
|
188 |
|
189 lemma subset_eqvt[eqvt]: |
|
190 shows "p \<bullet> (S \<subseteq> T) \<longleftrightarrow> (p \<bullet> S) \<subseteq> (p \<bullet> T)" |
|
191 unfolding subset_eq |
|
192 by (perm_simp) (rule refl) |
|
193 |
|
194 lemma psubset_eqvt[eqvt]: |
|
195 shows "p \<bullet> (S \<subset> T) \<longleftrightarrow> (p \<bullet> S) \<subset> (p \<bullet> T)" |
|
196 unfolding psubset_eq |
|
197 by (perm_simp) (rule refl) |
|
198 |
|
199 lemma image_eqvt[eqvt]: |
|
200 shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)" |
|
201 unfolding permute_set_eq_image |
|
202 unfolding permute_fun_def [where f=f] |
|
203 by (simp add: image_image) |
|
204 |
|
205 lemma vimage_eqvt[eqvt]: |
|
206 shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)" |
|
207 unfolding vimage_def |
|
208 by (perm_simp) (rule refl) |
|
209 |
|
210 lemma Union_eqvt[eqvt]: |
|
211 shows "p \<bullet> (\<Union> S) = \<Union> (p \<bullet> S)" |
|
212 unfolding Union_eq |
|
213 by (perm_simp) (rule refl) |
|
214 |
|
215 lemma Sigma_eqvt: |
|
216 shows "(p \<bullet> (X \<times> Y)) = (p \<bullet> X) \<times> (p \<bullet> Y)" |
|
217 unfolding Sigma_def |
|
218 unfolding UNION_eq_Union_image |
|
219 by (perm_simp) (rule refl) |
|
220 |
|
221 lemma finite_permute_iff: |
|
222 shows "finite (p \<bullet> A) \<longleftrightarrow> finite A" |
|
223 unfolding permute_set_eq_vimage |
|
224 using bij_permute by (rule finite_vimage_iff) |
|
225 |
|
226 lemma finite_eqvt[eqvt]: |
|
227 shows "p \<bullet> finite A = finite (p \<bullet> A)" |
|
228 unfolding finite_permute_iff permute_bool_def .. |
|
229 |
|
230 |
|
231 section {* List Operations *} |
|
232 |
|
233 lemma append_eqvt[eqvt]: |
|
234 shows "p \<bullet> (xs @ ys) = (p \<bullet> xs) @ (p \<bullet> ys)" |
|
235 by (induct xs) auto |
|
236 |
|
237 lemma rev_eqvt[eqvt]: |
|
238 shows "p \<bullet> (rev xs) = rev (p \<bullet> xs)" |
|
239 by (induct xs) (simp_all add: append_eqvt) |
|
240 |
|
241 lemma supp_rev: |
|
242 shows "supp (rev xs) = supp xs" |
|
243 by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil) |
|
244 |
|
245 lemma fresh_rev: |
|
246 shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs" |
|
247 by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil) |
|
248 |
|
249 lemma map_eqvt[eqvt]: |
|
250 shows "p \<bullet> (map f xs) = map (p \<bullet> f) (p \<bullet> xs)" |
|
251 by (induct xs) (simp_all, simp only: permute_fun_app_eq) |
|
252 |
|
253 lemma removeAll_eqvt[eqvt]: |
|
254 shows "p \<bullet> (removeAll x xs) = removeAll (p \<bullet> x) (p \<bullet> xs)" |
|
255 by (induct xs) (auto) |
|
256 |
|
257 lemma supp_removeAll: |
|
258 fixes x::"atom" |
|
259 shows "supp (removeAll x xs) = supp xs - {x}" |
|
260 by (induct xs) |
|
261 (auto simp add: supp_Nil supp_Cons supp_atom) |
|
262 |
|
263 lemma filter_eqvt[eqvt]: |
|
264 shows "p \<bullet> (filter f xs) = filter (p \<bullet> f) (p \<bullet> xs)" |
|
265 apply(induct xs) |
|
266 apply(simp) |
|
267 apply(simp only: filter.simps permute_list.simps if_eqvt) |
|
268 apply(simp only: permute_fun_app_eq) |
|
269 done |
|
270 |
|
271 lemma distinct_eqvt[eqvt]: |
|
272 shows "p \<bullet> (distinct xs) = distinct (p \<bullet> xs)" |
|
273 apply(induct xs) |
|
274 apply(simp add: permute_bool_def) |
|
275 apply(simp add: conj_eqvt Not_eqvt mem_eqvt set_eqvt) |
|
276 done |
|
277 |
|
278 lemma length_eqvt[eqvt]: |
|
279 shows "p \<bullet> (length xs) = length (p \<bullet> xs)" |
|
280 by (induct xs) (simp_all add: permute_pure) |
|
281 |
|
282 |
|
283 subsection {* Equivariance Finite-Set Operations *} |
|
284 |
|
285 lemma in_fset_eqvt[eqvt]: |
|
286 shows "(p \<bullet> (x |\<in>| S)) = ((p \<bullet> x) |\<in>| (p \<bullet> S))" |
|
287 unfolding in_fset |
|
288 by (perm_simp) (simp) |
|
289 |
|
290 lemma union_fset_eqvt[eqvt]: |
|
291 shows "(p \<bullet> (S |\<union>| T)) = ((p \<bullet> S) |\<union>| (p \<bullet> T))" |
|
292 by (induct S) (simp_all) |
|
293 |
|
294 lemma supp_union_fset: |
|
295 fixes S T::"'a::fs fset" |
|
296 shows "supp (S |\<union>| T) = supp S \<union> supp T" |
|
297 by (induct S) (auto) |
|
298 |
|
299 lemma fresh_union_fset: |
|
300 fixes S T::"'a::fs fset" |
|
301 shows "a \<sharp> S |\<union>| T \<longleftrightarrow> a \<sharp> S \<and> a \<sharp> T" |
|
302 unfolding fresh_def |
|
303 by (simp add: supp_union_fset) |
|
304 |
|
305 lemma map_fset_eqvt[eqvt]: |
|
306 shows "p \<bullet> (map_fset f S) = map_fset (p \<bullet> f) (p \<bullet> S)" |
|
307 by (lifting map_eqvt) |
|
308 |
|
309 |
|
310 subsection {* Product Operations *} |
|
311 |
|
312 lemma fst_eqvt[eqvt]: |
|
313 "p \<bullet> (fst x) = fst (p \<bullet> x)" |
|
314 by (cases x) simp |
|
315 |
|
316 lemma snd_eqvt[eqvt]: |
|
317 "p \<bullet> (snd x) = snd (p \<bullet> x)" |
|
318 by (cases x) simp |
|
319 |
|
320 lemma split_eqvt[eqvt]: |
|
321 shows "p \<bullet> (split P x) = split (p \<bullet> P) (p \<bullet> x)" |
|
322 unfolding split_def |
|
323 by (perm_simp) (rule refl) |
|
324 |
|
325 |
|
326 section {* Test cases *} |
|
327 |
10 |
328 |
11 |
329 declare [[trace_eqvt = false]] |
12 declare [[trace_eqvt = false]] |
330 (* declare [[trace_eqvt = true]] *) |
13 (* declare [[trace_eqvt = true]] *) |
331 |
14 |