|
1 theory Parser |
|
2 imports "../Nominal-General/Nominal2_Atoms" |
|
3 "../Nominal-General/Nominal2_Eqvt" |
|
4 "../Nominal-General/Nominal2_Supp" |
|
5 "Perm" "Equivp" "Rsp" "Lift" "Fv" |
|
6 begin |
|
7 |
|
8 section{* Interface for nominal_datatype *} |
|
9 |
|
10 text {* |
|
11 |
|
12 Nominal-Datatype-part: |
|
13 |
|
14 |
|
15 1nd Arg: (string list * binding * mixfix * (binding * typ list * mixfix) list) list |
|
16 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
17 type(s) to be defined constructors list |
|
18 (ty args, name, syn) (name, typs, syn) |
|
19 |
|
20 Binder-Function-part: |
|
21 |
|
22 2rd Arg: (binding * typ option * mixfix) list |
|
23 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
24 binding function(s) |
|
25 to be defined |
|
26 (name, type, syn) |
|
27 |
|
28 3th Arg: term list |
|
29 ^^^^^^^^^ |
|
30 the equations of the binding functions |
|
31 (Trueprop equations) |
|
32 *} |
|
33 |
|
34 ML {* |
|
35 |
|
36 *} |
|
37 |
|
38 text {*****************************************************} |
|
39 ML {* |
|
40 (* nominal datatype parser *) |
|
41 local |
|
42 structure P = OuterParse |
|
43 |
|
44 fun tuple ((x, y, z), u) = (x, y, z, u) |
|
45 fun tswap (((x, y), z), u) = (x, y, u, z) |
|
46 in |
|
47 |
|
48 val _ = OuterKeyword.keyword "bind" |
|
49 val anno_typ = Scan.option (P.name --| P.$$$ "::") -- P.typ |
|
50 |
|
51 (* binding specification *) |
|
52 (* maybe use and_list *) |
|
53 val bind_parser = |
|
54 P.enum "," ((P.$$$ "bind" |-- P.term) -- (P.$$$ "in" |-- P.name) >> swap) |
|
55 |
|
56 val constr_parser = |
|
57 P.binding -- Scan.repeat anno_typ |
|
58 |
|
59 (* datatype parser *) |
|
60 val dt_parser = |
|
61 (P.type_args -- P.binding -- P.opt_mixfix >> P.triple1) -- |
|
62 (P.$$$ "=" |-- P.enum1 "|" (constr_parser -- bind_parser -- P.opt_mixfix >> tswap)) >> tuple |
|
63 |
|
64 (* function equation parser *) |
|
65 val fun_parser = |
|
66 Scan.optional (P.$$$ "binder" |-- P.fixes -- SpecParse.where_alt_specs) ([],[]) |
|
67 |
|
68 (* main parser *) |
|
69 val main_parser = |
|
70 (P.and_list1 dt_parser) -- fun_parser >> P.triple2 |
|
71 |
|
72 end |
|
73 *} |
|
74 |
|
75 (* adds "_raw" to the end of constants and types *) |
|
76 ML {* |
|
77 fun add_raw s = s ^ "_raw" |
|
78 fun add_raws ss = map add_raw ss |
|
79 fun raw_bind bn = Binding.suffix_name "_raw" bn |
|
80 |
|
81 fun replace_str ss s = |
|
82 case (AList.lookup (op=) ss s) of |
|
83 SOME s' => s' |
|
84 | NONE => s |
|
85 |
|
86 fun replace_typ ty_ss (Type (a, Ts)) = Type (replace_str ty_ss a, map (replace_typ ty_ss) Ts) |
|
87 | replace_typ ty_ss T = T |
|
88 |
|
89 fun raw_dts ty_ss dts = |
|
90 let |
|
91 |
|
92 fun raw_dts_aux1 (bind, tys, mx) = |
|
93 (raw_bind bind, map (replace_typ ty_ss) tys, mx) |
|
94 |
|
95 fun raw_dts_aux2 (ty_args, bind, mx, constrs) = |
|
96 (ty_args, raw_bind bind, mx, map raw_dts_aux1 constrs) |
|
97 in |
|
98 map raw_dts_aux2 dts |
|
99 end |
|
100 |
|
101 fun replace_aterm trm_ss (Const (a, T)) = Const (replace_str trm_ss a, T) |
|
102 | replace_aterm trm_ss (Free (a, T)) = Free (replace_str trm_ss a, T) |
|
103 | replace_aterm trm_ss trm = trm |
|
104 |
|
105 fun replace_term trm_ss ty_ss trm = |
|
106 trm |> Term.map_aterms (replace_aterm trm_ss) |> map_types (replace_typ ty_ss) |
|
107 *} |
|
108 |
|
109 ML {* |
|
110 fun get_cnstrs dts = |
|
111 map (fn (_, _, _, constrs) => constrs) dts |
|
112 |
|
113 fun get_typed_cnstrs dts = |
|
114 flat (map (fn (_, bn, _, constrs) => |
|
115 (map (fn (bn', _, _) => (Binding.name_of bn, Binding.name_of bn')) constrs)) dts) |
|
116 |
|
117 fun get_cnstr_strs dts = |
|
118 map (fn (bn, _, _) => Binding.name_of bn) (flat (get_cnstrs dts)) |
|
119 |
|
120 fun get_bn_fun_strs bn_funs = |
|
121 map (fn (bn_fun, _, _) => Binding.name_of bn_fun) bn_funs |
|
122 *} |
|
123 |
|
124 ML {* |
|
125 fun rawify_dts dt_names dts dts_env = |
|
126 let |
|
127 val raw_dts = raw_dts dts_env dts |
|
128 val raw_dt_names = add_raws dt_names |
|
129 in |
|
130 (raw_dt_names, raw_dts) |
|
131 end |
|
132 *} |
|
133 |
|
134 ML {* |
|
135 fun rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs = |
|
136 let |
|
137 val bn_funs' = map (fn (bn, ty, mx) => |
|
138 (raw_bind bn, replace_typ dts_env ty, mx)) bn_funs |
|
139 |
|
140 val bn_eqs' = map (fn (attr, trm) => |
|
141 (attr, replace_term (cnstrs_env @ bn_fun_env) dts_env trm)) bn_eqs |
|
142 in |
|
143 (bn_funs', bn_eqs') |
|
144 end |
|
145 *} |
|
146 |
|
147 ML {* |
|
148 fun apfst3 f (a, b, c) = (f a, b, c) |
|
149 *} |
|
150 |
|
151 ML {* |
|
152 fun rawify_binds dts_env cnstrs_env bn_fun_env binds = |
|
153 map (map (map (map (fn (opt_trm, i, j, aty) => |
|
154 (Option.map (apfst (replace_term (cnstrs_env @ bn_fun_env) dts_env)) opt_trm, i, j, aty))))) binds |
|
155 *} |
|
156 |
|
157 ML {* |
|
158 fun find [] _ = error ("cannot find element") |
|
159 | find ((x, z)::xs) y = if (Long_Name.base_name x) = y then z else find xs y |
|
160 *} |
|
161 |
|
162 ML {* |
|
163 fun strip_bn_fun t = |
|
164 case t of |
|
165 Const (@{const_name sup}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r |
|
166 | Const (@{const_name append}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r |
|
167 | Const (@{const_name insert}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y => |
|
168 (i, NONE) :: strip_bn_fun y |
|
169 | Const (@{const_name Cons}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y => |
|
170 (i, NONE) :: strip_bn_fun y |
|
171 | Const (@{const_name bot}, _) => [] |
|
172 | Const (@{const_name Nil}, _) => [] |
|
173 | (f as Free _) $ Bound i => [(i, SOME f)] |
|
174 | _ => error ("Unsupported binding function: " ^ (PolyML.makestring t)) |
|
175 *} |
|
176 |
|
177 ML {* |
|
178 fun prep_bn dt_names dts eqs = |
|
179 let |
|
180 fun aux eq = |
|
181 let |
|
182 val (lhs, rhs) = eq |
|
183 |> strip_qnt_body "all" |
|
184 |> HOLogic.dest_Trueprop |
|
185 |> HOLogic.dest_eq |
|
186 val (bn_fun, [cnstr]) = strip_comb lhs |
|
187 val (_, ty) = dest_Free bn_fun |
|
188 val (ty_name, _) = dest_Type (domain_type ty) |
|
189 val dt_index = find_index (fn x => x = ty_name) dt_names |
|
190 val (cnstr_head, cnstr_args) = strip_comb cnstr |
|
191 val rhs_elements = strip_bn_fun rhs |
|
192 val included = map (apfst (fn i => length (cnstr_args) - i - 1)) rhs_elements |
|
193 in |
|
194 (dt_index, (bn_fun, (cnstr_head, included))) |
|
195 end |
|
196 fun order dts i ts = |
|
197 let |
|
198 val dt = nth dts i |
|
199 val cts = map (fn (x, _, _) => Binding.name_of x) ((fn (_, _, _, x) => x) dt) |
|
200 val ts' = map (fn (x, y) => (fst (dest_Const x), y)) ts |
|
201 in |
|
202 map (find ts') cts |
|
203 end |
|
204 |
|
205 val unordered = AList.group (op=) (map aux eqs) |
|
206 val unordered' = map (fn (x, y) => (x, AList.group (op=) y)) unordered |
|
207 val ordered = map (fn (x, y) => (x, map (fn (v, z) => (v, order dts x z)) y)) unordered' |
|
208 in |
|
209 ordered |
|
210 end |
|
211 *} |
|
212 |
|
213 ML {* |
|
214 fun add_primrec_wrapper funs eqs lthy = |
|
215 if null funs then (([], []), lthy) |
|
216 else |
|
217 let |
|
218 val eqs' = map (fn (_, eq) => (Attrib.empty_binding, eq)) eqs |
|
219 val funs' = map (fn (bn, ty, mx) => (bn, SOME ty, mx)) funs |
|
220 in |
|
221 Primrec.add_primrec funs' eqs' lthy |
|
222 end |
|
223 *} |
|
224 |
|
225 ML {* |
|
226 fun add_datatype_wrapper dt_names dts = |
|
227 let |
|
228 val conf = Datatype.default_config |
|
229 in |
|
230 Local_Theory.theory_result (Datatype.add_datatype conf dt_names dts) |
|
231 end |
|
232 *} |
|
233 |
|
234 ML {* |
|
235 fun raw_nominal_decls dts bn_funs bn_eqs binds lthy = |
|
236 let |
|
237 val thy = ProofContext.theory_of lthy |
|
238 val thy_name = Context.theory_name thy |
|
239 |
|
240 val dt_names = map (fn (_, s, _, _) => Binding.name_of s) dts |
|
241 val dt_full_names = map (Long_Name.qualify thy_name) dt_names |
|
242 val dt_full_names' = add_raws dt_full_names |
|
243 val dts_env = dt_full_names ~~ dt_full_names' |
|
244 |
|
245 val cnstrs = get_cnstr_strs dts |
|
246 val cnstrs_ty = get_typed_cnstrs dts |
|
247 val cnstrs_full_names = map (Long_Name.qualify thy_name) cnstrs |
|
248 val cnstrs_full_names' = map (fn (x, y) => Long_Name.qualify thy_name |
|
249 (Long_Name.qualify (add_raw x) (add_raw y))) cnstrs_ty |
|
250 val cnstrs_env = cnstrs_full_names ~~ cnstrs_full_names' |
|
251 |
|
252 val bn_fun_strs = get_bn_fun_strs bn_funs |
|
253 val bn_fun_strs' = add_raws bn_fun_strs |
|
254 val bn_fun_env = bn_fun_strs ~~ bn_fun_strs' |
|
255 val bn_fun_full_env = map (pairself (Long_Name.qualify thy_name)) |
|
256 (bn_fun_strs ~~ bn_fun_strs') |
|
257 |
|
258 val (raw_dt_names, raw_dts) = rawify_dts dt_names dts dts_env |
|
259 |
|
260 val (raw_bn_funs, raw_bn_eqs) = rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs |
|
261 |
|
262 val raw_binds = rawify_binds dts_env cnstrs_env bn_fun_full_env binds |
|
263 |
|
264 val raw_bns = prep_bn dt_full_names' raw_dts (map snd raw_bn_eqs) |
|
265 |
|
266 (*val _ = tracing (cat_lines (map PolyML.makestring raw_bns))*) |
|
267 in |
|
268 lthy |
|
269 |> add_datatype_wrapper raw_dt_names raw_dts |
|
270 ||>> add_primrec_wrapper raw_bn_funs raw_bn_eqs |
|
271 ||>> pair raw_binds |
|
272 ||>> pair raw_bns |
|
273 end |
|
274 *} |
|
275 |
|
276 lemma equivp_hack: "equivp x" |
|
277 sorry |
|
278 ML {* |
|
279 fun equivp_hack ctxt rel = |
|
280 let |
|
281 val thy = ProofContext.theory_of ctxt |
|
282 val ty = domain_type (fastype_of rel) |
|
283 val cty = ctyp_of thy ty |
|
284 val ct = cterm_of thy rel |
|
285 in |
|
286 Drule.instantiate' [SOME cty] [SOME ct] @{thm equivp_hack} |
|
287 end |
|
288 *} |
|
289 |
|
290 ML {* val cheat_alpha_eqvt = Unsynchronized.ref false *} |
|
291 ML {* val cheat_equivp = Unsynchronized.ref false *} |
|
292 ML {* val cheat_fv_rsp = Unsynchronized.ref false *} |
|
293 ML {* val cheat_const_rsp = Unsynchronized.ref false *} |
|
294 |
|
295 (* nominal_datatype2 does the following things in order: |
|
296 |
|
297 Parser.thy/raw_nominal_decls |
|
298 1) define the raw datatype |
|
299 2) define the raw binding functions |
|
300 |
|
301 Perm.thy/define_raw_perms |
|
302 3) define permutations of the raw datatype and show that the raw type is |
|
303 in the pt typeclass |
|
304 |
|
305 Lift.thy/define_fv_alpha_export, Fv.thy/define_fv & define_alpha |
|
306 4) define fv and fv_bn |
|
307 5) define alpha and alpha_bn |
|
308 |
|
309 Perm.thy/distinct_rel |
|
310 6) prove alpha_distincts (C1 x \<notsimeq> C2 y ...) (Proof by cases; simp) |
|
311 |
|
312 Tacs.thy/build_rel_inj |
|
313 6) prove alpha_eq_iff (C1 x = C2 y \<leftrightarrow> P x y ...) |
|
314 (left-to-right by intro rule, right-to-left by cases; simp) |
|
315 Equivp.thy/prove_eqvt |
|
316 7) prove bn_eqvt (common induction on the raw datatype) |
|
317 8) prove fv_eqvt (common induction on the raw datatype with help of above) |
|
318 Rsp.thy/build_alpha_eqvts |
|
319 9) prove alpha_eqvt and alpha_bn_eqvt |
|
320 (common alpha-induction, unfolding alpha_gen, permute of #* and =) |
|
321 Equivp.thy/build_alpha_refl & Equivp.thy/build_equivps |
|
322 10) prove that alpha and alpha_bn are equivalence relations |
|
323 (common induction and application of 'compose' lemmas) |
|
324 Lift.thy/define_quotient_types |
|
325 11) define quotient types |
|
326 Rsp.thy/build_fvbv_rsps |
|
327 12) prove bn respects (common induction and simp with alpha_gen) |
|
328 Rsp.thy/prove_const_rsp |
|
329 13) prove fv respects (common induction and simp with alpha_gen) |
|
330 14) prove permute respects (unfolds to alpha_eqvt) |
|
331 Rsp.thy/prove_alpha_bn_rsp |
|
332 15) prove alpha_bn respects |
|
333 (alpha_induct then cases then sym and trans of the relations) |
|
334 Rsp.thy/prove_alpha_alphabn |
|
335 16) show that alpha implies alpha_bn (by unduction, needed in following step) |
|
336 Rsp.thy/prove_const_rsp |
|
337 17) prove respects for all datatype constructors |
|
338 (unfold eq_iff and alpha_gen; introduce zero permutations; simp) |
|
339 Perm.thy/quotient_lift_consts_export |
|
340 18) define lifted constructors, fv, bn, alpha_bn, permutations |
|
341 Perm.thy/define_lifted_perms |
|
342 19) lift permutation zero and add properties to show that quotient type is in the pt typeclass |
|
343 Lift.thy/lift_thm |
|
344 20) lift permutation simplifications |
|
345 21) lift induction |
|
346 22) lift fv |
|
347 23) lift bn |
|
348 24) lift eq_iff |
|
349 25) lift alpha_distincts |
|
350 26) lift fv and bn eqvts |
|
351 Equivp.thy/prove_supports |
|
352 27) prove that union of arguments supports constructors |
|
353 Equivp.thy/prove_fs |
|
354 28) show that the lifted type is in fs typeclass (* by q_induct, supports *) |
|
355 Equivp.thy/supp_eq |
|
356 29) prove supp = fv |
|
357 *) |
|
358 ML {* |
|
359 fun nominal_datatype2 dts bn_funs bn_eqs binds lthy = |
|
360 let |
|
361 val _ = tracing "Raw declarations"; |
|
362 val thy = ProofContext.theory_of lthy |
|
363 val thy_name = Context.theory_name thy |
|
364 val ((((raw_dt_names, (raw_bn_funs_loc, raw_bn_eqs_loc)), raw_binds), raw_bns), lthy2) = |
|
365 raw_nominal_decls dts bn_funs bn_eqs binds lthy |
|
366 val morphism_2_1 = ProofContext.export_morphism lthy2 lthy |
|
367 fun export_fun f (t, l) = (f t, map (map (apsnd (Option.map f))) l); |
|
368 val raw_bns_exp = map (apsnd (map (export_fun (Morphism.term morphism_2_1)))) raw_bns; |
|
369 val bn_funs_decls = flat (map (fn (ith, l) => map (fn (bn, data) => (bn, ith, data)) l) raw_bns_exp); |
|
370 val raw_bn_funs = map (Morphism.term morphism_2_1) raw_bn_funs_loc |
|
371 val raw_bn_eqs = ProofContext.export lthy2 lthy raw_bn_eqs_loc |
|
372 |
|
373 val dtinfo = Datatype.the_info (ProofContext.theory_of lthy2) (hd raw_dt_names); |
|
374 val {descr, sorts, ...} = dtinfo; |
|
375 fun nth_dtyp i = Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec i); |
|
376 val raw_tys = map (fn (i, _) => nth_dtyp i) descr; |
|
377 val all_typs = map (fn i => Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec i)) (map fst descr) |
|
378 val all_full_tnames = map (fn (_, (n, _, _)) => n) descr; |
|
379 val dtinfos = map (Datatype.the_info (ProofContext.theory_of lthy2)) all_full_tnames; |
|
380 val rel_dtinfos = List.take (dtinfos, (length dts)); |
|
381 val inject = flat (map #inject dtinfos); |
|
382 val distincts = flat (map #distinct dtinfos); |
|
383 val rel_distinct = map #distinct rel_dtinfos; |
|
384 val induct = #induct dtinfo; |
|
385 val exhausts = map #exhaust dtinfos; |
|
386 val _ = tracing "Defining permutations, fv and alpha"; |
|
387 val ((raw_perm_def, raw_perm_simps, perms), lthy3) = |
|
388 Local_Theory.theory_result (define_raw_perms dtinfo (length dts)) lthy2; |
|
389 val raw_binds_flat = map (map flat) raw_binds; |
|
390 val ((((_, fv_ts), fv_def), ((alpha_ts, alpha_intros), (alpha_cases, alpha_induct))), lthy4) = |
|
391 define_fv_alpha_export dtinfo raw_binds_flat bn_funs_decls lthy3; |
|
392 val (fv, fvbn) = chop (length perms) fv_ts; |
|
393 |
|
394 val (alpha_ts_nobn, alpha_ts_bn) = chop (length fv) alpha_ts |
|
395 val dts_names = map (fn (i, (s, _, _)) => (s, i)) (#descr dtinfo); |
|
396 val bn_tys = map (domain_type o fastype_of) raw_bn_funs; |
|
397 val bn_nos = map (dtyp_no_of_typ dts_names) bn_tys; |
|
398 val bns = raw_bn_funs ~~ bn_nos; |
|
399 val rel_dists = flat (map (distinct_rel lthy4 alpha_cases) |
|
400 (rel_distinct ~~ alpha_ts_nobn)); |
|
401 val rel_dists_bn = flat (map (distinct_rel lthy4 alpha_cases) |
|
402 ((map (fn i => nth rel_distinct i) bn_nos) ~~ alpha_ts_bn)) |
|
403 val alpha_eq_iff = build_rel_inj alpha_intros (inject @ distincts) alpha_cases lthy4 |
|
404 val _ = tracing "Proving equivariance"; |
|
405 val (bv_eqvt, lthy5) = prove_eqvt raw_tys induct (raw_bn_eqs @ raw_perm_def) (map fst bns) lthy4 |
|
406 val (fv_eqvt, lthy6) = prove_eqvt raw_tys induct (fv_def @ raw_perm_def) (fv @ fvbn) lthy5 |
|
407 fun alpha_eqvt_tac' _ = |
|
408 if !cheat_alpha_eqvt then Skip_Proof.cheat_tac thy |
|
409 else alpha_eqvt_tac alpha_induct (raw_perm_def @ alpha_eq_iff) lthy6 1 |
|
410 val alpha_eqvt = build_alpha_eqvts alpha_ts alpha_eqvt_tac' lthy6; |
|
411 val _ = tracing "Proving equivalence"; |
|
412 val fv_alpha_all = combine_fv_alpha_bns (fv, fvbn) (alpha_ts_nobn, alpha_ts_bn) bn_nos; |
|
413 val reflps = build_alpha_refl fv_alpha_all alpha_ts induct alpha_eq_iff lthy6; |
|
414 val alpha_equivp = |
|
415 if !cheat_equivp then map (equivp_hack lthy6) alpha_ts_nobn |
|
416 else build_equivps alpha_ts reflps alpha_induct |
|
417 inject alpha_eq_iff distincts alpha_cases alpha_eqvt lthy6; |
|
418 val qty_binds = map (fn (_, b, _, _) => b) dts; |
|
419 val qty_names = map Name.of_binding qty_binds; |
|
420 val qty_full_names = map (Long_Name.qualify thy_name) qty_names |
|
421 val (qtys, lthy7) = define_quotient_types qty_binds all_typs alpha_ts_nobn alpha_equivp lthy6; |
|
422 val const_names = map Name.of_binding (flat (map (fn (_, _, _, t) => map (fn (b, _, _) => b) t) dts)); |
|
423 val raw_consts = |
|
424 flat (map (fn (i, (_, _, l)) => |
|
425 map (fn (cname, dts) => |
|
426 Const (cname, map (Datatype_Aux.typ_of_dtyp descr sorts) dts ---> |
|
427 Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec i))) l) descr); |
|
428 val (consts, const_defs, lthy8) = quotient_lift_consts_export qtys (const_names ~~ raw_consts) lthy7; |
|
429 val _ = tracing "Proving respects"; |
|
430 val bns_rsp_pre' = build_fvbv_rsps alpha_ts alpha_induct raw_bn_eqs (map fst bns) lthy8; |
|
431 val (bns_rsp_pre, lthy9) = fold_map ( |
|
432 fn (bn_t, _) => prove_const_rsp qtys Binding.empty [bn_t] (fn _ => |
|
433 resolve_tac bns_rsp_pre' 1)) bns lthy8; |
|
434 val bns_rsp = flat (map snd bns_rsp_pre); |
|
435 fun fv_rsp_tac _ = if !cheat_fv_rsp then Skip_Proof.cheat_tac thy |
|
436 else fvbv_rsp_tac alpha_induct fv_def lthy8 1; |
|
437 val fv_rsps = prove_fv_rsp fv_alpha_all alpha_ts fv_rsp_tac lthy9; |
|
438 val (fv_rsp_pre, lthy10) = fold_map |
|
439 (fn fv => fn ctxt => prove_const_rsp qtys Binding.empty [fv] |
|
440 (fn _ => asm_simp_tac (HOL_ss addsimps fv_rsps) 1) ctxt) (fv @ fvbn) lthy9; |
|
441 val fv_rsp = flat (map snd fv_rsp_pre); |
|
442 val (perms_rsp, lthy11) = prove_const_rsp qtys Binding.empty perms |
|
443 (fn _ => asm_simp_tac (HOL_ss addsimps alpha_eqvt) 1) lthy10; |
|
444 val alpha_bn_rsp_pre = prove_alpha_bn_rsp alpha_ts alpha_induct (alpha_eq_iff @ rel_dists @ rel_dists_bn) alpha_equivp exhausts alpha_ts_bn lthy11; |
|
445 val (alpha_bn_rsps, lthy11a) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst] |
|
446 (fn _ => asm_simp_tac (HOL_ss addsimps alpha_bn_rsp_pre) 1)) alpha_ts_bn lthy11 |
|
447 (* val _ = map tracing (map PolyML.makestring alpha_bn_rsps);*) |
|
448 fun const_rsp_tac _ = |
|
449 if !cheat_const_rsp then Skip_Proof.cheat_tac thy |
|
450 else let val alpha_alphabn = prove_alpha_alphabn alpha_ts alpha_induct alpha_eq_iff alpha_ts_bn lthy11a |
|
451 in constr_rsp_tac alpha_eq_iff (fv_rsp @ bns_rsp @ reflps @ alpha_alphabn) 1 end |
|
452 val (const_rsps, lthy12) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst] |
|
453 const_rsp_tac) raw_consts lthy11a |
|
454 val qfv_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) (fv @ fvbn) |
|
455 val (qfv_ts, qfv_defs, lthy12a) = quotient_lift_consts_export qtys (qfv_names ~~ (fv @ fvbn)) lthy12; |
|
456 val (qfv_ts_nobn, qfv_ts_bn) = chop (length perms) qfv_ts; |
|
457 val qbn_names = map (fn (b, _ , _) => Name.of_binding b) bn_funs |
|
458 val (qbn_ts, qbn_defs, lthy12b) = quotient_lift_consts_export qtys (qbn_names ~~ raw_bn_funs) lthy12a; |
|
459 val qalpha_bn_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) alpha_ts_bn |
|
460 val (qalpha_ts_bn, qalphabn_defs, lthy12c) = quotient_lift_consts_export qtys (qalpha_bn_names ~~ alpha_ts_bn) lthy12b; |
|
461 val _ = tracing "Lifting permutations"; |
|
462 val thy = Local_Theory.exit_global lthy12c; |
|
463 val perm_names = map (fn x => "permute_" ^ x) qty_names |
|
464 val thy' = define_lifted_perms qtys qty_full_names (perm_names ~~ perms) raw_perm_simps thy; |
|
465 val lthy13 = Theory_Target.init NONE thy'; |
|
466 val q_name = space_implode "_" qty_names; |
|
467 fun suffix_bind s = Binding.qualify true q_name (Binding.name s); |
|
468 val _ = tracing "Lifting induction"; |
|
469 val constr_names = map (Long_Name.base_name o fst o dest_Const) consts; |
|
470 val q_induct = Rule_Cases.name constr_names (lift_thm qtys lthy13 induct); |
|
471 fun note_suffix s th ctxt = |
|
472 snd (Local_Theory.note ((suffix_bind s, []), th) ctxt); |
|
473 fun note_simp_suffix s th ctxt = |
|
474 snd (Local_Theory.note ((suffix_bind s, [Attrib.internal (K Simplifier.simp_add)]), th) ctxt); |
|
475 val (_, lthy14) = Local_Theory.note ((suffix_bind "induct", |
|
476 [Attrib.internal (K (Rule_Cases.case_names constr_names))]), [Rule_Cases.name constr_names q_induct]) lthy13; |
|
477 val q_inducts = Project_Rule.projects lthy13 (1 upto (length fv)) q_induct |
|
478 val (_, lthy14a) = Local_Theory.note ((suffix_bind "inducts", []), q_inducts) lthy14; |
|
479 val q_perm = map (lift_thm qtys lthy14) raw_perm_def; |
|
480 val lthy15 = note_simp_suffix "perm" q_perm lthy14a; |
|
481 val q_fv = map (lift_thm qtys lthy15) fv_def; |
|
482 val lthy16 = note_simp_suffix "fv" q_fv lthy15; |
|
483 val q_bn = map (lift_thm qtys lthy16) raw_bn_eqs; |
|
484 val lthy17 = note_simp_suffix "bn" q_bn lthy16; |
|
485 val _ = tracing "Lifting eq-iff"; |
|
486 (* val _ = map tracing (map PolyML.makestring alpha_eq_iff);*) |
|
487 val eq_iff_unfolded0 = map (Local_Defs.unfold lthy17 @{thms alphas3}) alpha_eq_iff |
|
488 val eq_iff_unfolded1 = map (Local_Defs.unfold lthy17 @{thms alphas2}) eq_iff_unfolded0 |
|
489 val eq_iff_unfolded2 = map (Local_Defs.unfold lthy17 @{thms alphas} ) eq_iff_unfolded1 |
|
490 val q_eq_iff_pre0 = map (lift_thm qtys lthy17) eq_iff_unfolded2; |
|
491 val q_eq_iff_pre1 = map (Local_Defs.fold lthy17 @{thms alphas3}) q_eq_iff_pre0 |
|
492 val q_eq_iff_pre2 = map (Local_Defs.fold lthy17 @{thms alphas2}) q_eq_iff_pre1 |
|
493 val q_eq_iff = map (Local_Defs.fold lthy17 @{thms alphas}) q_eq_iff_pre2 |
|
494 val (_, lthy18) = Local_Theory.note ((suffix_bind "eq_iff", []), q_eq_iff) lthy17; |
|
495 val q_dis = map (lift_thm qtys lthy18) rel_dists; |
|
496 val lthy19 = note_simp_suffix "distinct" q_dis lthy18; |
|
497 val q_eqvt = map (lift_thm qtys lthy19) (bv_eqvt @ fv_eqvt); |
|
498 val (_, lthy20) = Local_Theory.note ((Binding.empty, |
|
499 [Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)]), q_eqvt) lthy19; |
|
500 val _ = tracing "Finite Support"; |
|
501 val supports = map (prove_supports lthy20 q_perm) consts; |
|
502 val fin_supp = HOLogic.conj_elims (prove_fs lthy20 q_induct supports qtys); |
|
503 val thy3 = Local_Theory.exit_global lthy20; |
|
504 val lthy21 = Theory_Target.instantiation (qty_full_names, [], @{sort fs}) thy3; |
|
505 fun tac _ = Class.intro_classes_tac [] THEN (ALLGOALS (resolve_tac fin_supp)) |
|
506 val lthy22 = Class.prove_instantiation_instance tac lthy21 |
|
507 val fv_alpha_all = combine_fv_alpha_bns (qfv_ts_nobn, qfv_ts_bn) (alpha_ts_nobn, qalpha_ts_bn) bn_nos; |
|
508 val (names, supp_eq_t) = supp_eq fv_alpha_all; |
|
509 val q_supp = HOLogic.conj_elims (Goal.prove lthy22 names [] supp_eq_t (fn _ => supp_eq_tac q_induct q_fv q_perm q_eq_iff lthy22 1)) handle _ => []; |
|
510 val lthy23 = note_suffix "supp" q_supp lthy22; |
|
511 in |
|
512 ((raw_dt_names, raw_bn_funs, raw_bn_eqs, raw_binds), lthy23) |
|
513 end |
|
514 *} |
|
515 |
|
516 |
|
517 ML {* |
|
518 (* parsing the datatypes and declaring *) |
|
519 (* constructors in the local theory *) |
|
520 fun prepare_dts dt_strs lthy = |
|
521 let |
|
522 val thy = ProofContext.theory_of lthy |
|
523 |
|
524 fun mk_type full_tname tvrs = |
|
525 Type (full_tname, map (fn a => TVar ((a, 0), [])) tvrs) |
|
526 |
|
527 fun prep_cnstr lthy full_tname tvs (cname, anno_tys, mx, _) = |
|
528 let |
|
529 val tys = map (Syntax.read_typ lthy o snd) anno_tys |
|
530 val ty = mk_type full_tname tvs |
|
531 in |
|
532 ((cname, tys ---> ty, mx), (cname, tys, mx)) |
|
533 end |
|
534 |
|
535 fun prep_dt lthy (tvs, tname, mx, cnstrs) = |
|
536 let |
|
537 val full_tname = Sign.full_name thy tname |
|
538 val (cnstrs', cnstrs'') = |
|
539 split_list (map (prep_cnstr lthy full_tname tvs) cnstrs) |
|
540 in |
|
541 (cnstrs', (tvs, tname, mx, cnstrs'')) |
|
542 end |
|
543 |
|
544 val (cnstrs, dts) = |
|
545 split_list (map (prep_dt lthy) dt_strs) |
|
546 in |
|
547 lthy |
|
548 |> Local_Theory.theory (Sign.add_consts_i (flat cnstrs)) |
|
549 |> pair dts |
|
550 end |
|
551 *} |
|
552 |
|
553 ML {* |
|
554 (* parsing the binding function specification and *) |
|
555 (* declaring the functions in the local theory *) |
|
556 fun prepare_bn_funs bn_fun_strs bn_eq_strs lthy = |
|
557 let |
|
558 val ((bn_funs, bn_eqs), _) = |
|
559 Specification.read_spec bn_fun_strs bn_eq_strs lthy |
|
560 |
|
561 fun prep_bn_fun ((bn, T), mx) = (bn, T, mx) |
|
562 val bn_funs' = map prep_bn_fun bn_funs |
|
563 in |
|
564 lthy |
|
565 |> Local_Theory.theory (Sign.add_consts_i bn_funs') |
|
566 |> pair (bn_funs', bn_eqs) |
|
567 end |
|
568 *} |
|
569 |
|
570 ML {* |
|
571 fun find_all eq xs (k',i) = |
|
572 maps (fn (k, (v1, v2)) => if eq (k, k') then [(v1, v2, i)] else []) xs |
|
573 *} |
|
574 |
|
575 ML {* |
|
576 (* associates every SOME with the index in the list; drops NONEs *) |
|
577 fun mk_env xs = |
|
578 let |
|
579 fun mapp (_: int) [] = [] |
|
580 | mapp i (a :: xs) = |
|
581 case a of |
|
582 NONE => mapp (i + 1) xs |
|
583 | SOME x => (x, i) :: mapp (i + 1) xs |
|
584 in mapp 0 xs end |
|
585 *} |
|
586 |
|
587 ML {* |
|
588 fun env_lookup xs x = |
|
589 case AList.lookup (op =) xs x of |
|
590 SOME x => x |
|
591 | NONE => error ("cannot find " ^ x ^ " in the binding specification."); |
|
592 *} |
|
593 |
|
594 ML {* |
|
595 val recursive = Unsynchronized.ref false |
|
596 val alpha_type = Unsynchronized.ref AlphaGen |
|
597 *} |
|
598 |
|
599 ML {* |
|
600 fun prepare_binds dt_strs lthy = |
|
601 let |
|
602 fun extract_annos_binds dt_strs = |
|
603 map (map (fn (_, antys, _, bns) => (map fst antys, bns))) dt_strs |
|
604 |
|
605 fun prep_bn env bn_str = |
|
606 case (Syntax.read_term lthy bn_str) of |
|
607 Free (x, _) => (NONE, env_lookup env x) |
|
608 | Const (a, T) $ Free (x, _) => (SOME (Const (a, T), !recursive), env_lookup env x) |
|
609 | _ => error (bn_str ^ " not allowed as binding specification."); |
|
610 |
|
611 fun prep_typ env (i, opt_name) = |
|
612 case opt_name of |
|
613 NONE => [] |
|
614 | SOME x => find_all (op=) env (x,i); |
|
615 |
|
616 (* annos - list of annotation for each type (either NONE or SOME fo a type *) |
|
617 |
|
618 fun prep_binds (annos, bind_strs) = |
|
619 let |
|
620 val env = mk_env annos (* for every label the index *) |
|
621 val binds = map (fn (x, y) => (x, prep_bn env y)) bind_strs |
|
622 in |
|
623 map_index (prep_typ binds) annos |
|
624 end |
|
625 |
|
626 val result = map (map (map (map (fn (a, b, c) => |
|
627 (a, b, c, if !alpha_type=AlphaLst andalso a = NONE then AlphaGen else !alpha_type))))) |
|
628 (map (map prep_binds) (extract_annos_binds (get_cnstrs dt_strs))) |
|
629 |
|
630 val _ = warning (@{make_string} result) |
|
631 |
|
632 in |
|
633 result |
|
634 end |
|
635 *} |
|
636 |
|
637 ML {* |
|
638 fun nominal_datatype2_cmd (dt_strs, bn_fun_strs, bn_eq_strs) lthy = |
|
639 let |
|
640 fun prep_typ (tvs, tname, mx, _) = (tname, length tvs, mx) |
|
641 |
|
642 val lthy0 = |
|
643 Local_Theory.theory (Sign.add_types (map prep_typ dt_strs)) lthy |
|
644 val (dts, lthy1) = |
|
645 prepare_dts dt_strs lthy0 |
|
646 val ((bn_funs, bn_eqs), lthy2) = |
|
647 prepare_bn_funs bn_fun_strs bn_eq_strs lthy1 |
|
648 val binds = prepare_binds dt_strs lthy2 |
|
649 in |
|
650 nominal_datatype2 dts bn_funs bn_eqs binds lthy |> snd |
|
651 end |
|
652 *} |
|
653 |
|
654 |
|
655 (* Command Keyword *) |
|
656 |
|
657 ML {* |
|
658 let |
|
659 val kind = OuterKeyword.thy_decl |
|
660 in |
|
661 OuterSyntax.local_theory "nominal_datatype" "test" kind |
|
662 (main_parser >> nominal_datatype2_cmd) |
|
663 end |
|
664 *} |
|
665 |
|
666 |
|
667 end |
|
668 |
|
669 |
|
670 |