Attic/Fv.thy
changeset 2137 5b007ac41b29
parent 2015 3e7969262809
equal deleted inserted replaced
2136:2fc55508a6d0 2137:5b007ac41b29
       
     1 theory Fv
       
     2 imports "../Nominal-General/Nominal2_Atoms" 
       
     3         "Abs" "Perm" "Rsp" "Nominal2_FSet"
       
     4 begin
       
     5 
       
     6 (* The bindings data structure:
       
     7 
       
     8   Bindings are a list of lists of lists of triples.
       
     9 
       
    10    The first list represents the datatypes defined.
       
    11    The second list represents the constructors.
       
    12    The internal list is a list of all the bndings that
       
    13    concern the constructor.
       
    14 
       
    15    Every triple consists of a function, the binding and
       
    16    the body.
       
    17 
       
    18   Eg:
       
    19 nominal_datatype
       
    20 
       
    21    C1
       
    22  | C2 x y z bind x in z
       
    23  | C3 x y z bind f x in z bind g y in z
       
    24 
       
    25 yields:
       
    26 [
       
    27  [],
       
    28  [(NONE, 0, 2)],
       
    29  [(SOME (Const f), 0, 2), (Some (Const g), 1, 2)]]
       
    30 
       
    31 A SOME binding has to have a function which takes an appropriate
       
    32 argument and returns an atom set. A NONE binding has to be on an
       
    33 argument that is an atom or an atom set.
       
    34 *)
       
    35 
       
    36 (*
       
    37 An overview of the generation of free variables:
       
    38 
       
    39 1) fv_bn functions are generated only for the non-recursive binds.
       
    40 
       
    41    An fv_bn for a constructor is a union of values for the arguments:
       
    42 
       
    43    For an argument x that is in the bn function
       
    44    - if it is a recursive argument bn' we return: fv_bn' x
       
    45    - otherwise empty
       
    46 
       
    47    For an argument x that is not in the bn function
       
    48    - for atom we return: {atom x}
       
    49    - for atom set we return: atom ` x
       
    50    - for a recursive call to type ty' we return: fv_ty' x
       
    51      with fv of the appropriate type
       
    52    - otherwise empty
       
    53 
       
    54 2) fv_ty functions generated for all types being defined:
       
    55 
       
    56    fv_ty for a constructor is a union of values for the arguments.
       
    57 
       
    58    For an argument that is bound in a shallow binding we return empty.
       
    59 
       
    60    For an argument x that bound in a non-recursive deep binding
       
    61    we return: fv_bn x.
       
    62 
       
    63    Otherwise we return the free variables of the argument minus the
       
    64    bound variables of the argument.
       
    65 
       
    66    The free variables for an argument x are:
       
    67    - for an atom: {atom x}
       
    68    - for atom set: atom ` x
       
    69    - for recursive call to type ty' return: fv_ty' x
       
    70    - for nominal datatype ty' return: fv_ty' x
       
    71 
       
    72    The bound variables are a union of results of all bindings that
       
    73    involve the given argument. For a paricular binding:
       
    74 
       
    75    - for a binding function bn: bn x
       
    76    - for a recursive argument of type ty': fv_fy' x
       
    77    - for nominal datatype ty' return: fv_ty' x
       
    78 *)
       
    79 
       
    80 (*
       
    81 An overview of the generation of alpha-equivalence:
       
    82 
       
    83 1) alpha_bn relations are generated for binding functions.
       
    84 
       
    85    An alpha_bn for a constructor is true if a conjunction of
       
    86    propositions for each argument holds.
       
    87 
       
    88    For an argument a proposition is build as follows from
       
    89    th:
       
    90 
       
    91    - for a recursive argument in the bn function, we return: alpha_bn argl argr
       
    92    - for a recursive argument for type ty not in bn, we return: alpha_ty argl argr
       
    93    - for other arguments in the bn function we return: True
       
    94    - for other arguments not in the bn function we return: argl = argr
       
    95 
       
    96 2) alpha_ty relations are generated for all the types being defined:
       
    97 
       
    98    For each constructor we gather all the arguments that are bound,
       
    99    and for each of those we add a permutation. We associate those
       
   100    permutations with the bindings. Note that two bindings can have
       
   101    the same permutation if the arguments being bound are the same.
       
   102 
       
   103    An alpha_ty for a constructor is true if there exist permutations
       
   104    as above such that a conjunction of propositions for all arguments holds.
       
   105 
       
   106    For an argument we allow bindings where only one of the following
       
   107    holds:
       
   108 
       
   109    - Argument is bound in some shallow bindings: We return true
       
   110    - Argument of type ty is bound recursively in some other
       
   111      arguments [i1, .. in] with one binding function bn.
       
   112      We return:
       
   113 
       
   114      (bn argl, (argl, argl_i1, ..., argl_in)) \<approx>gen
       
   115      \<lambda>(argl,argl1,..,argln) (argr,argr1,..,argrn). 
       
   116          (alpha_ty argl argr) \<and> (alpha_i1 argl1 argr1) \<and> .. \<and> (alpha_in argln argrn)
       
   117      \<lambda>(arg,arg1,..,argn). (fv_ty arg) \<union> (fv_i1 arg1) \<union> .. \<union> (fv_in argn)
       
   118      pi
       
   119      (bn argr, (argr, argr_i1, ..., argr_in))
       
   120 
       
   121    - Argument is bound in some deep non-recursive bindings.
       
   122      We return: alpha_bn argl argr
       
   123    - Argument of type ty has some shallow bindings [b1..bn] and/or
       
   124      non-recursive bindings [f1 a1, .., fm am], where the bindings
       
   125      have the permutations p1..pl. We return:
       
   126 
       
   127      (b1l \<union>..\<union> bnl \<union> f1 a1l \<union>..\<union> fn anl, argl) \<approx>gen
       
   128      alpha_ty fv_ty (p1 +..+ pl)
       
   129      (b1r \<union>..\<union> bnr \<union> f1 a1r \<union>..\<union> fn anr, argr)
       
   130 
       
   131    - Argument has some recursive bindings. The bindings were
       
   132      already treated in 2nd case so we return: True
       
   133    - Argument has no bindings and is not bound.
       
   134      If it is recursive for type ty, we return: alpha_ty argl argr
       
   135      Otherwise we return: argl = argr
       
   136 
       
   137 *)
       
   138 
       
   139 
       
   140 ML {*
       
   141 datatype alpha_mode = AlphaGen | AlphaRes | AlphaLst;
       
   142 *}
       
   143 
       
   144 ML {*
       
   145 fun atyp_const AlphaGen = @{const_name alpha_gen}
       
   146   | atyp_const AlphaRes = @{const_name alpha_res}
       
   147   | atyp_const AlphaLst = @{const_name alpha_lst}
       
   148 *}
       
   149 
       
   150 (* TODO: make sure that parser checks that bindings are compatible *)
       
   151 ML {*
       
   152 fun alpha_const_for_binds [] = atyp_const AlphaGen
       
   153   | alpha_const_for_binds ((NONE, _, _, at) :: t) = atyp_const at
       
   154   | alpha_const_for_binds ((SOME (_, _), _, _, at) :: _) = atyp_const at
       
   155 *}
       
   156 
       
   157 ML {*
       
   158 fun is_atom thy typ =
       
   159   Sign.of_sort thy (typ, @{sort at})
       
   160 
       
   161 fun is_atom_set thy (Type ("fun", [t, @{typ bool}])) = is_atom thy t
       
   162   | is_atom_set _ _ = false;
       
   163 
       
   164 fun is_atom_fset thy (Type ("FSet.fset", [t])) = is_atom thy t
       
   165   | is_atom_fset _ _ = false;
       
   166 *}
       
   167 
       
   168 
       
   169 (* Like map2, only if the second list is empty passes empty lists insted of error *)
       
   170 ML {*
       
   171 fun map2i _ [] [] = []
       
   172   | map2i f (x :: xs) (y :: ys) = f x y :: map2i f xs ys
       
   173   | map2i f (x :: xs) [] = f x [] :: map2i f xs []
       
   174   | map2i _ _ _ = raise UnequalLengths;
       
   175 *}
       
   176 
       
   177 (* Finds bindings with the same function and binding, and gathers all
       
   178    bodys for such pairs
       
   179  *)
       
   180 ML {*
       
   181 fun gather_binds binds =
       
   182 let
       
   183   fun gather_binds_cons binds =
       
   184     let
       
   185       val common = map (fn (f, bi, _, aty) => (f, bi, aty)) binds
       
   186       val nodups = distinct (op =) common
       
   187       fun find_bodys (sf, sbi, sty) =
       
   188         filter (fn (f, bi, _, aty) => f = sf andalso bi = sbi andalso aty = sty) binds
       
   189       val bodys = map ((map (fn (_, _, bo, _) => bo)) o find_bodys) nodups
       
   190     in
       
   191       nodups ~~ bodys
       
   192     end
       
   193 in
       
   194   map (map gather_binds_cons) binds
       
   195 end
       
   196 *}
       
   197 
       
   198 ML {*
       
   199 fun un_gather_binds_cons binds =
       
   200   flat (map (fn (((f, bi, aty), bos), pi) => map (fn bo => ((f, bi, bo, aty), pi)) bos) binds)
       
   201 *}
       
   202 
       
   203 ML {*
       
   204   open Datatype_Aux; (* typ_of_dtyp, DtRec, ... *);
       
   205 *}
       
   206 ML {*
       
   207   (* TODO: It is the same as one in 'nominal_atoms' *)
       
   208   fun mk_atom ty = Const (@{const_name atom}, ty --> @{typ atom});
       
   209   val noatoms = @{term "{} :: atom set"};
       
   210   fun mk_single_atom x = HOLogic.mk_set @{typ atom} [mk_atom (type_of x) $ x];
       
   211   fun mk_union sets =
       
   212     fold (fn a => fn b =>
       
   213       if a = noatoms then b else
       
   214       if b = noatoms then a else
       
   215       if a = b then a else
       
   216       HOLogic.mk_binop @{const_name sup} (a, b)) (rev sets) noatoms;
       
   217   val mk_inter = foldr1 (HOLogic.mk_binop @{const_name inf})
       
   218   fun mk_diff a b =
       
   219     if b = noatoms then a else
       
   220     if b = a then noatoms else
       
   221     HOLogic.mk_binop @{const_name minus} (a, b);
       
   222   fun mk_atom_set t =
       
   223     let
       
   224       val ty = fastype_of t;
       
   225       val atom_ty = HOLogic.dest_setT ty --> @{typ atom};
       
   226       val img_ty = atom_ty --> ty --> @{typ "atom set"};
       
   227     in
       
   228       (Const (@{const_name image}, img_ty) $ Const (@{const_name atom}, atom_ty) $ t)
       
   229     end;
       
   230   fun mk_atom_fset t =
       
   231     let
       
   232       val ty = fastype_of t;
       
   233       val atom_ty = dest_fsetT ty --> @{typ atom};
       
   234       val fmap_ty = atom_ty --> ty --> @{typ "atom fset"};
       
   235       val fset_to_set = @{term "fset_to_set :: atom fset \<Rightarrow> atom set"}
       
   236     in
       
   237       fset_to_set $ ((Const (@{const_name fmap}, fmap_ty) $ Const (@{const_name atom}, atom_ty) $ t))
       
   238     end;
       
   239   (* Similar to one in USyntax *)
       
   240   fun mk_pair (fst, snd) =
       
   241     let val ty1 = fastype_of fst
       
   242       val ty2 = fastype_of snd
       
   243       val c = HOLogic.pair_const ty1 ty2
       
   244     in c $ fst $ snd
       
   245     end;
       
   246 *}
       
   247 
       
   248 (* Given [fv1, fv2, fv3] creates %(x, y, z). fv1 x u fv2 y u fv3 z *)
       
   249 ML {*
       
   250 fun mk_compound_fv fvs =
       
   251 let
       
   252   val nos = (length fvs - 1) downto 0;
       
   253   val fvs_applied = map (fn (fv, no) => fv $ Bound no) (fvs ~~ nos);
       
   254   val fvs_union = mk_union fvs_applied;
       
   255   val (tyh :: tys) = rev (map (domain_type o fastype_of) fvs);
       
   256   fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t))
       
   257 in
       
   258   fold fold_fun tys (Abs ("", tyh, fvs_union))
       
   259 end;
       
   260 *}
       
   261 
       
   262 (* Given [R1, R2, R3] creates %(x,x'). %(y,y'). %(z,z'). R x x' \<and> R y y' \<and> R z z' *)
       
   263 ML {*
       
   264 fun mk_compound_alpha Rs =
       
   265 let
       
   266   val nos = (length Rs - 1) downto 0;
       
   267   val nos2 = (2 * length Rs - 1) downto length Rs;
       
   268   val Rs_applied = map (fn (R, (no2, no)) => R $ Bound no2 $ Bound no) (Rs ~~ (nos2 ~~ nos));
       
   269   val Rs_conj = mk_conjl Rs_applied;
       
   270   val (tyh :: tys) = rev (map (domain_type o fastype_of) Rs);
       
   271   fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t))
       
   272   val abs_rhs = fold fold_fun tys (Abs ("", tyh, Rs_conj))
       
   273 in
       
   274   fold fold_fun tys (Abs ("", tyh, abs_rhs))
       
   275 end;
       
   276 *}
       
   277 
       
   278 
       
   279 ML {*
       
   280 fun non_rec_binds l =
       
   281 let
       
   282   fun is_non_rec (SOME (f, false), _, _, _) = SOME f
       
   283     | is_non_rec _ = NONE
       
   284 in
       
   285   distinct (op =) (map_filter is_non_rec (flat (flat l)))
       
   286 end
       
   287 *}
       
   288 
       
   289 (* We assume no bindings in the type on which bn is defined *)
       
   290 ML {*
       
   291 fun fv_bn thy (dt_info : Datatype_Aux.info) fv_frees bn_fvbn (fvbn, (bn, ith_dtyp, args_in_bns)) =
       
   292 let
       
   293   val {descr, sorts, ...} = dt_info;
       
   294   fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
       
   295   fun fv_bn_constr (cname, dts) args_in_bn =
       
   296   let
       
   297     val Ts = map (typ_of_dtyp descr sorts) dts;
       
   298     val names = Datatype_Prop.make_tnames Ts;
       
   299     val args = map Free (names ~~ Ts);
       
   300     val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
       
   301     fun fv_arg ((dt, x), arg_no) =
       
   302       let
       
   303         val ty = fastype_of x
       
   304 (*        val _ = tracing ("B 1" ^ PolyML.makestring args_in_bn);*)
       
   305 (*        val _ = tracing ("B 2" ^ PolyML.makestring bn_fvbn);*)
       
   306       in
       
   307         case AList.lookup (op=) args_in_bn arg_no of
       
   308           SOME NONE => @{term "{} :: atom set"}
       
   309         | SOME (SOME (f : term)) => (the (AList.lookup (op=) bn_fvbn f)) $ x
       
   310         | NONE =>
       
   311             if is_atom thy ty then mk_single_atom x else
       
   312             if is_atom_set thy ty then mk_atom_set x else
       
   313             if is_atom_fset thy ty then mk_atom_fset x else
       
   314             if is_rec_type dt then nth fv_frees (body_index dt) $ x else
       
   315             @{term "{} :: atom set"}
       
   316       end;
       
   317     val arg_nos = 0 upto (length dts - 1)
       
   318   in
       
   319     HOLogic.mk_Trueprop (HOLogic.mk_eq
       
   320       (fvbn $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ arg_nos))))
       
   321   end;
       
   322   val (_, (_, _, constrs)) = nth descr ith_dtyp;
       
   323   val eqs = map2i fv_bn_constr constrs args_in_bns
       
   324 in
       
   325   ((bn, fvbn), eqs)
       
   326 end
       
   327 *}
       
   328 
       
   329 ML {* print_depth 100 *}
       
   330 ML {*
       
   331 fun fv_bns thy dt_info fv_frees rel_bns =
       
   332 let
       
   333   fun mk_fvbn_free (bn, ith, _) =
       
   334     let
       
   335       val fvbn_name = "fv_" ^ (Long_Name.base_name (fst (dest_Const bn)));
       
   336     in
       
   337       (fvbn_name, Free (fvbn_name, fastype_of (nth fv_frees ith)))
       
   338     end;
       
   339   val (fvbn_names, fvbn_frees) = split_list (map mk_fvbn_free rel_bns);
       
   340   val bn_fvbn = (map (fn (bn, _, _) => bn) rel_bns) ~~ fvbn_frees
       
   341   val (l1, l2) = split_list (map (fv_bn thy dt_info fv_frees bn_fvbn) (fvbn_frees ~~ rel_bns));
       
   342 in
       
   343   (l1, (fvbn_names ~~ l2))
       
   344 end
       
   345 *}
       
   346 
       
   347 
       
   348 ML {*
       
   349 fun alpha_bn (dt_info : Datatype_Aux.info) alpha_frees bn_alphabn ((bn, ith_dtyp, args_in_bns), (alpha_bn_free, _ (*is_rec*) )) =
       
   350 let
       
   351   val {descr, sorts, ...} = dt_info;
       
   352   fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
       
   353   fun alpha_bn_constr (cname, dts) args_in_bn =
       
   354   let
       
   355     val Ts = map (typ_of_dtyp descr sorts) dts;
       
   356     val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts);
       
   357     val names2 = Name.variant_list ("pi" :: names) (Datatype_Prop.make_tnames Ts);
       
   358     val args = map Free (names ~~ Ts);
       
   359     val args2 = map Free (names2 ~~ Ts);
       
   360     val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
       
   361     val rhs = HOLogic.mk_Trueprop
       
   362       (alpha_bn_free $ (list_comb (c, args)) $ (list_comb (c, args2)));
       
   363     fun lhs_arg ((dt, arg_no), (arg, arg2)) =
       
   364       case AList.lookup (op=) args_in_bn arg_no of
       
   365         SOME NONE => @{term True}
       
   366       | SOME (SOME f) => (the (AList.lookup (op=) bn_alphabn f)) $ arg $ arg2
       
   367       | NONE =>
       
   368           if is_rec_type dt then (nth alpha_frees (body_index dt)) $ arg $ arg2
       
   369           else HOLogic.mk_eq (arg, arg2)
       
   370     val arg_nos = 0 upto (length dts - 1)
       
   371     val lhss = mk_conjl (map lhs_arg (dts ~~ arg_nos ~~ (args ~~ args2)))
       
   372     val eq = Logic.mk_implies (HOLogic.mk_Trueprop lhss, rhs)
       
   373   in
       
   374     eq
       
   375   end
       
   376   val (_, (_, _, constrs)) = nth descr ith_dtyp;
       
   377   val eqs = map2i alpha_bn_constr constrs args_in_bns
       
   378 in
       
   379   ((bn, alpha_bn_free), eqs)
       
   380 end
       
   381 *}
       
   382 
       
   383 ML {*
       
   384 fun alpha_bns dt_info alpha_frees rel_bns bns_rec =
       
   385 let
       
   386   val {descr, sorts, ...} = dt_info;
       
   387   fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
       
   388   fun mk_alphabn_free (bn, ith, _) =
       
   389     let
       
   390       val alphabn_name = "alpha_" ^ (Long_Name.base_name (fst (dest_Const bn)));
       
   391       val alphabn_type = nth_dtyp ith --> nth_dtyp ith --> @{typ bool};
       
   392       val alphabn_free = Free(alphabn_name, alphabn_type);
       
   393     in
       
   394       (alphabn_name, alphabn_free)
       
   395     end;
       
   396   val (alphabn_names, alphabn_frees) = split_list (map mk_alphabn_free rel_bns);
       
   397   val bn_alphabn = (map (fn (bn, _, _) => bn) rel_bns) ~~ alphabn_frees;
       
   398   val pair = split_list (map (alpha_bn dt_info alpha_frees bn_alphabn)
       
   399     (rel_bns ~~ (alphabn_frees ~~ bns_rec)))
       
   400 in
       
   401   (alphabn_names, pair)
       
   402 end
       
   403 *}
       
   404 
       
   405 
       
   406 (* Checks that a list of bindings contains only compatible ones *)
       
   407 ML {*
       
   408 fun bns_same l =
       
   409   length (distinct (op =) (map (fn ((b, _, _, atyp), _) => (b, atyp)) l)) = 1
       
   410 *}
       
   411 
       
   412 ML {*
       
   413 fun setify x =
       
   414   if fastype_of x = @{typ "atom list"} then
       
   415   Const (@{const_name set}, @{typ "atom list \<Rightarrow> atom set"}) $ x else x
       
   416 *}
       
   417 
       
   418 ML {*
       
   419 fun define_fv (dt_info : Datatype_Aux.info) bindsall bns lthy =
       
   420 let
       
   421   val thy = ProofContext.theory_of lthy;
       
   422   val {descr, sorts, ...} = dt_info;
       
   423   fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
       
   424   val fv_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
       
   425     "fv_" ^ name_of_typ (nth_dtyp i)) descr);
       
   426   val fv_types = map (fn (i, _) => nth_dtyp i --> @{typ "atom set"}) descr;
       
   427   val fv_frees = map Free (fv_names ~~ fv_types);
       
   428 (* TODO: We need a transitive closure, but instead we do this hack considering
       
   429    all binding functions as recursive or not *)
       
   430   val nr_bns =
       
   431     if (non_rec_binds bindsall) = [] then []
       
   432     else map (fn (bn, _, _) => bn) bns;
       
   433   val rel_bns = filter (fn (bn, _, _) => bn mem nr_bns) bns;
       
   434   val (bn_fv_bns, fv_bn_names_eqs) = fv_bns thy dt_info fv_frees rel_bns;
       
   435   val fvbns = map snd bn_fv_bns;
       
   436   val (fv_bn_names, fv_bn_eqs) = split_list fv_bn_names_eqs;
       
   437 
       
   438   fun fv_constr ith_dtyp (cname, dts) bindcs =
       
   439     let
       
   440       val Ts = map (typ_of_dtyp descr sorts) dts;
       
   441       val bindslen = length bindcs
       
   442       val pi_strs_same = replicate bindslen "pi"
       
   443       val pi_strs = Name.variant_list [] pi_strs_same;
       
   444       val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs;
       
   445       val bind_pis_gath = bindcs ~~ pis;
       
   446       val bind_pis = un_gather_binds_cons bind_pis_gath;
       
   447       val bindcs = map fst bind_pis;
       
   448       val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts);
       
   449       val args = map Free (names ~~ Ts);
       
   450       val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
       
   451       val fv_c = nth fv_frees ith_dtyp;
       
   452       val arg_nos = 0 upto (length dts - 1)
       
   453       fun fv_bind args (NONE, i, _, _) =
       
   454             if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else
       
   455             if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else
       
   456             if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else
       
   457             if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else
       
   458             (* TODO goes the code for preiously defined nominal datatypes *)
       
   459             @{term "{} :: atom set"}
       
   460         | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i)
       
   461       fun fv_binds_as_set args relevant = mk_union (map (setify o fv_bind args) relevant)
       
   462       fun find_nonrec_binder j (SOME (f, false), i, _, _) = if i = j then SOME f else NONE
       
   463         | find_nonrec_binder _ _ = NONE
       
   464       fun fv_arg ((dt, x), arg_no) =
       
   465         case get_first (find_nonrec_binder arg_no) bindcs of
       
   466           SOME f =>
       
   467             (case get_first (fn (x, y) => if x = f then SOME y else NONE) bn_fv_bns of
       
   468                 SOME fv_bn => fv_bn $ x
       
   469               | NONE => error "bn specified in a non-rec binding but not in bn list")
       
   470         | NONE =>
       
   471             let
       
   472               val arg =
       
   473                 if is_rec_type dt then nth fv_frees (body_index dt) $ x else
       
   474                 if ((is_atom thy) o fastype_of) x then mk_single_atom x else
       
   475                 if ((is_atom_set thy) o fastype_of) x then mk_atom_set x else
       
   476                 if ((is_atom_fset thy) o fastype_of) x then mk_atom_fset x else
       
   477                 (* TODO goes the code for preiously defined nominal datatypes *)
       
   478                 @{term "{} :: atom set"};
       
   479               (* If i = j then we generate it only once *)
       
   480               val relevant = filter (fn (_, i, j, _) => ((i = arg_no) orelse (j = arg_no))) bindcs;
       
   481               val sub = fv_binds_as_set args relevant
       
   482             in
       
   483               mk_diff arg sub
       
   484             end;
       
   485       val fv_eq = HOLogic.mk_Trueprop (HOLogic.mk_eq
       
   486         (fv_c $ list_comb (c, args), mk_union (map fv_arg  (dts ~~ args ~~ arg_nos))))
       
   487     in
       
   488       fv_eq
       
   489     end;
       
   490   fun fv_eq (i, (_, _, constrs)) binds = map2i (fv_constr i) constrs binds;
       
   491   val fveqs = map2i fv_eq descr (gather_binds bindsall)
       
   492   val fv_eqs_perfv = fveqs
       
   493   val rel_bns_nos = map (fn (_, i, _) => i) rel_bns;
       
   494   fun filter_fun (_, b) = b mem rel_bns_nos;
       
   495   val all_fvs = (fv_names ~~ fv_eqs_perfv) ~~ (0 upto (length fv_names - 1))
       
   496   val (fv_names_fst, fv_eqs_fst) = apsnd flat (split_list (map fst (filter_out filter_fun all_fvs)))
       
   497   val (fv_names_snd, fv_eqs_snd) = apsnd flat (split_list (map fst (filter filter_fun all_fvs)))
       
   498   val fv_eqs_all = fv_eqs_fst @ (flat fv_bn_eqs);
       
   499   val fv_names_all = fv_names_fst @ fv_bn_names;
       
   500   val add_binds = map (fn x => (Attrib.empty_binding, x))
       
   501 (* Function_Fun.add_fun Function_Common.default_config ... true *)
       
   502   val (fvs, lthy') = (Primrec.add_primrec
       
   503     (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_all) (add_binds fv_eqs_all) lthy)
       
   504   val (fvs2, lthy'') =
       
   505     if fv_eqs_snd = [] then (([], []), lthy') else
       
   506    (Primrec.add_primrec
       
   507     (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_snd) (add_binds fv_eqs_snd) lthy')
       
   508   val ordered_fvs = fv_frees @ fvbns;
       
   509   val all_fvs = (fst fvs @ fst fvs2, snd fvs @ snd fvs2)
       
   510 in
       
   511   ((all_fvs, ordered_fvs), lthy'')
       
   512 end
       
   513 *}
       
   514 
       
   515 ML {*
       
   516 fun define_alpha (dt_info : Datatype_Aux.info) bindsall bns fv_frees lthy =
       
   517 let
       
   518   val thy = ProofContext.theory_of lthy;
       
   519   val {descr, sorts, ...} = dt_info;
       
   520   fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
       
   521 (* TODO: We need a transitive closure, but instead we do this hack considering
       
   522    all binding functions as recursive or not *)
       
   523   val nr_bns =
       
   524     if (non_rec_binds bindsall) = [] then []
       
   525     else map (fn (bn, _, _) => bn) bns;
       
   526   val alpha_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
       
   527     "alpha_" ^ name_of_typ (nth_dtyp i)) descr);
       
   528   val alpha_types = map (fn (i, _) => nth_dtyp i --> nth_dtyp i --> @{typ bool}) descr;
       
   529   val alpha_frees = map Free (alpha_names ~~ alpha_types);
       
   530   (* We assume that a bn is either recursive or not *)
       
   531   val bns_rec = map (fn (bn, _, _) => not (bn mem nr_bns)) bns;
       
   532   val (alpha_bn_names, (bn_alpha_bns, alpha_bn_eqs)) =
       
   533     alpha_bns dt_info alpha_frees bns bns_rec
       
   534   val alpha_bn_frees = map snd bn_alpha_bns;
       
   535   val alpha_bn_types = map fastype_of alpha_bn_frees;
       
   536 
       
   537   fun alpha_constr ith_dtyp (cname, dts) bindcs =
       
   538     let
       
   539       val Ts = map (typ_of_dtyp descr sorts) dts;
       
   540       val bindslen = length bindcs
       
   541       val pi_strs_same = replicate bindslen "pi"
       
   542       val pi_strs = Name.variant_list [] pi_strs_same;
       
   543       val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs;
       
   544       val bind_pis_gath = bindcs ~~ pis;
       
   545       val bind_pis = un_gather_binds_cons bind_pis_gath;
       
   546       val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts);
       
   547       val args = map Free (names ~~ Ts);
       
   548       val names2 = Name.variant_list (pi_strs @ names) (Datatype_Prop.make_tnames Ts);
       
   549       val args2 = map Free (names2 ~~ Ts);
       
   550       val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
       
   551       val alpha = nth alpha_frees ith_dtyp;
       
   552       val arg_nos = 0 upto (length dts - 1)
       
   553       fun fv_bind args (NONE, i, _, _) =
       
   554             if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else
       
   555             if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else
       
   556             if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else
       
   557             if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else
       
   558             (* TODO goes the code for preiously defined nominal datatypes *)
       
   559             @{term "{} :: atom set"}
       
   560         | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i)
       
   561       fun fv_binds args relevant = mk_union (map (fv_bind args) relevant)
       
   562       val alpha_rhs =
       
   563         HOLogic.mk_Trueprop (alpha $ (list_comb (c, args)) $ (list_comb (c, args2)));
       
   564       fun alpha_arg ((dt, arg_no), (arg, arg2)) =
       
   565         let
       
   566           val rel_in_simp_binds = filter (fn ((NONE, i, _, _), _) => i = arg_no | _ => false) bind_pis;
       
   567           val rel_in_comp_binds = filter (fn ((SOME _, i, _, _), _) => i = arg_no | _ => false) bind_pis;
       
   568           val rel_has_binds = filter (fn ((NONE, _, j, _), _) => j = arg_no
       
   569                                        | ((SOME (_, false), _, j, _), _) => j = arg_no
       
   570                                        | _ => false) bind_pis;
       
   571           val rel_has_rec_binds = filter
       
   572             (fn ((SOME (_, true), _, j, _), _) => j = arg_no | _ => false) bind_pis;
       
   573         in
       
   574           case (rel_in_simp_binds, rel_in_comp_binds, rel_has_binds, rel_has_rec_binds) of
       
   575             ([], [], [], []) =>
       
   576               if is_rec_type dt then (nth alpha_frees (body_index dt) $ arg $ arg2)
       
   577               else (HOLogic.mk_eq (arg, arg2))
       
   578           | (_, [], [], []) => @{term True}
       
   579           | ([], [], [], _) => @{term True}
       
   580           | ([], ((((SOME (bn, is_rec)), _, _, atyp), _) :: _), [], []) =>
       
   581             if not (bns_same rel_in_comp_binds) then error "incompatible bindings for an argument" else
       
   582             if is_rec then
       
   583               let
       
   584                 val (rbinds, rpis) = split_list rel_in_comp_binds
       
   585                 val bound_in_nos = map (fn (_, _, i, _) => i) rbinds
       
   586                 val bound_in_ty_nos = map (fn i => body_index (nth dts i)) bound_in_nos;
       
   587                 val bound_args = arg :: map (nth args) bound_in_nos;
       
   588                 val bound_args2 = arg2 :: map (nth args2) bound_in_nos;
       
   589                 val lhs_binds = fv_binds args rbinds
       
   590                 val lhs_arg = foldr1 HOLogic.mk_prod bound_args
       
   591                 val lhs = mk_pair (lhs_binds, lhs_arg);
       
   592                 val rhs_binds = fv_binds args2 rbinds;
       
   593                 val rhs_arg = foldr1 HOLogic.mk_prod bound_args2;
       
   594                 val rhs = mk_pair (rhs_binds, rhs_arg);
       
   595                 val fvs = map (nth fv_frees) ((body_index dt) :: bound_in_ty_nos);
       
   596                 val fv = mk_compound_fv fvs;
       
   597                 val alphas = map (nth alpha_frees) ((body_index dt) :: bound_in_ty_nos);
       
   598                 val alpha = mk_compound_alpha alphas;
       
   599                 val pi = foldr1 (uncurry mk_plus) (distinct (op =) rpis);
       
   600                 val alpha_gen_pre = Const (atyp_const atyp, dummyT) $ lhs $ alpha $ fv $ pi $ rhs;
       
   601                 val alpha_gen = Syntax.check_term lthy alpha_gen_pre
       
   602               in
       
   603                 alpha_gen
       
   604               end
       
   605             else
       
   606               let
       
   607                 val alpha_bn_const =
       
   608                   nth alpha_bn_frees (find_index (fn (b, _, _) => b = bn) bns)
       
   609               in
       
   610                 alpha_bn_const $ arg $ arg2
       
   611               end
       
   612           | ([], [], relevant, []) =>
       
   613             let
       
   614               val (rbinds, rpis) = split_list relevant
       
   615               val lhs_binds = fv_binds args rbinds
       
   616               val lhs = mk_pair (lhs_binds, arg);
       
   617               val rhs_binds = fv_binds args2 rbinds;
       
   618               val rhs = mk_pair (rhs_binds, arg2);
       
   619               val alpha = nth alpha_frees (body_index dt);
       
   620               val fv = nth fv_frees (body_index dt);
       
   621               val pi = foldr1 (uncurry mk_plus) (distinct (op =) rpis);
       
   622               val alpha_const = alpha_const_for_binds rbinds;
       
   623               val alpha_gen_pre = Const (alpha_const, dummyT) $ lhs $ alpha $ fv $ pi $ rhs;
       
   624               val alpha_gen = Syntax.check_term lthy alpha_gen_pre
       
   625             in
       
   626               alpha_gen
       
   627             end
       
   628           | _ => error "Fv.alpha: not supported binding structure"
       
   629         end
       
   630       val alphas = map alpha_arg (dts ~~ arg_nos ~~ (args ~~ args2))
       
   631       val alpha_lhss = mk_conjl alphas
       
   632       val alpha_lhss_ex =
       
   633         fold (fn pi_str => fn t => HOLogic.mk_exists (pi_str, @{typ perm}, t)) pi_strs alpha_lhss
       
   634       val alpha_eq = Logic.mk_implies (HOLogic.mk_Trueprop alpha_lhss_ex, alpha_rhs)
       
   635     in
       
   636       alpha_eq
       
   637     end;
       
   638   fun alpha_eq (i, (_, _, constrs)) binds = map2i (alpha_constr i) constrs binds;
       
   639   val alphaeqs = map2i alpha_eq descr (gather_binds bindsall)
       
   640   val alpha_eqs = flat alphaeqs
       
   641   val add_binds = map (fn x => (Attrib.empty_binding, x))
       
   642   val (alphas, lthy') = (Inductive.add_inductive_i
       
   643      {quiet_mode = true, verbose = false, alt_name = Binding.empty,
       
   644       coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false}
       
   645      (map2 (fn x => fn y => ((Binding.name x, y), NoSyn)) (alpha_names @ alpha_bn_names)
       
   646      (alpha_types @ alpha_bn_types)) []
       
   647      (add_binds (alpha_eqs @ flat alpha_bn_eqs)) [] lthy)
       
   648 in
       
   649   (alphas, lthy')
       
   650 end
       
   651 *}
       
   652 
       
   653 
       
   654 ML {*
       
   655 fun define_fv_alpha_export dt binds bns ctxt =
       
   656 let
       
   657   val (((fv_ts_loc, fv_def_loc), ord_fv_ts_loc), ctxt') =
       
   658     define_fv dt binds bns ctxt;
       
   659   val (alpha, ctxt'') =
       
   660     define_alpha dt binds bns fv_ts_loc ctxt';
       
   661   val alpha_ts_loc = #preds alpha
       
   662   val alpha_induct_loc = #induct alpha
       
   663   val alpha_intros_loc = #intrs alpha;
       
   664   val alpha_cases_loc = #elims alpha
       
   665   val morphism = ProofContext.export_morphism ctxt'' ctxt;
       
   666   val fv_ts = map (Morphism.term morphism) fv_ts_loc;
       
   667   val ord_fv_ts = map (Morphism.term morphism) ord_fv_ts_loc;
       
   668   val fv_def = Morphism.fact morphism fv_def_loc;
       
   669   val alpha_ts = map (Morphism.term morphism) alpha_ts_loc;
       
   670   val alpha_induct = Morphism.thm morphism alpha_induct_loc;
       
   671   val alpha_intros = Morphism.fact morphism alpha_intros_loc
       
   672   val alpha_cases = Morphism.fact morphism alpha_cases_loc
       
   673 in
       
   674   ((((fv_ts, ord_fv_ts), fv_def), ((alpha_ts, alpha_intros), (alpha_cases, alpha_induct))), ctxt'')
       
   675 end;
       
   676 *}
       
   677 
       
   678 end