Nominal/Ex/Multi_Recs2.thy
changeset 2594 515e5496171c
parent 2593 25dcb2b1329e
child 2598 b136721eedb2
equal deleted inserted replaced
2593:25dcb2b1329e 2594:515e5496171c
    67 thm fun_recs.size_eqvt
    67 thm fun_recs.size_eqvt
    68 thm fun_recs.supports
    68 thm fun_recs.supports
    69 thm fun_recs.fsupp
    69 thm fun_recs.fsupp
    70 thm fun_recs.supp
    70 thm fun_recs.supp
    71 
    71 
    72 term alpha_b_fnclause
       
    73 term alpha_b_fnclauses
       
    74 term alpha_b_lrb
       
    75 term alpha_b_lrbs
       
    76 term alpha_b_pat
       
    77 
       
    78 term alpha_b_fnclause_raw
       
    79 term alpha_b_fnclauses_raw
       
    80 term alpha_b_lrb_raw
       
    81 term alpha_b_lrbs_raw
       
    82 term alpha_b_pat_raw
       
    83 
       
    84 lemma uu1:
       
    85   fixes as0::exp  and as1::fnclause
       
    86   shows "(\<lambda>x::exp. True) (as0::exp)"
       
    87   and   "alpha_b_fnclause as1 (permute_b_fnclause p as1)"
       
    88   and   "alpha_b_fnclauses as2 (permute_b_fnclauses p as2)"
       
    89   and   "alpha_b_lrb as3 (permute_b_lrb p as3)"
       
    90   and   "alpha_b_lrbs as4 (permute_b_lrbs p as4)"
       
    91   and   "alpha_b_pat as5 (permute_b_pat p as5)"
       
    92 apply(induct as0 and as1 and as2 and as3 and as4 and as5 rule: fun_recs.inducts)
       
    93 apply(simp_all)
       
    94 apply(simp only: fun_recs.perm_bn_simps)
       
    95 apply(simp only: fun_recs.eq_iff)
       
    96 apply(simp)
       
    97 oops
       
    98 
       
    99 
       
   100 thm fun_recs.distinct
    72 thm fun_recs.distinct
   101 thm fun_recs.induct
    73 thm fun_recs.induct
   102 thm fun_recs.inducts
    74 thm fun_recs.inducts
   103 thm fun_recs.exhaust
    75 thm fun_recs.exhaust
   104 thm fun_recs.fv_defs
    76 thm fun_recs.fv_defs