Tutorial/Tutorial5.thy
branchNominal2-Isabelle2011-1
changeset 3070 4b4742aa43f2
parent 3069 78d828f43cdf
child 3071 11f6a561eb4b
equal deleted inserted replaced
3069:78d828f43cdf 3070:4b4742aa43f2
     1 
       
     2 
       
     3 theory Tutorial5
       
     4 imports Tutorial4
       
     5 begin
       
     6 
       
     7 section {* Type-Preservation and Progress Lemma*}
       
     8 
       
     9 text {*
       
    10   The point of this tutorial is to prove the
       
    11   type-preservation and progress lemma. Since
       
    12   we now know that \<Down>, \<longrightarrow>cbv* and the machine
       
    13   correspond to each other, we only need to
       
    14   prove this property for one of them. We chose
       
    15   \<longrightarrow>cbv.
       
    16 
       
    17   First we need to establish two elimination
       
    18   properties and two auxiliary lemmas about contexts.
       
    19 *}
       
    20 
       
    21 
       
    22 lemma valid_elim:
       
    23   assumes a: "valid ((x, T) # \<Gamma>)"
       
    24   shows "atom x \<sharp> \<Gamma> \<and> valid \<Gamma>"
       
    25 using a by (cases) (auto)
       
    26 
       
    27 lemma valid_insert:
       
    28   assumes a: "valid (\<Delta> @ [(x, T)] @ \<Gamma>)"
       
    29   shows "valid (\<Delta> @ \<Gamma>)" 
       
    30 using a
       
    31 by (induct \<Delta>)
       
    32    (auto simp add: fresh_append fresh_Cons dest!: valid_elim)
       
    33 
       
    34 lemma fresh_list: 
       
    35   shows "atom y \<sharp> xs = (\<forall>x \<in> set xs. atom y \<sharp> x)"
       
    36 by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
       
    37 
       
    38 lemma context_unique:
       
    39   assumes a1: "valid \<Gamma>"
       
    40   and     a2: "(x, T) \<in> set \<Gamma>"
       
    41   and     a3: "(x, U) \<in> set \<Gamma>"
       
    42   shows "T = U" 
       
    43 using a1 a2 a3
       
    44 by (induct) (auto simp add: fresh_list fresh_Pair fresh_at_base)
       
    45 
       
    46 
       
    47 section {* EXERCISE 16 *}
       
    48 
       
    49 text {*
       
    50   Next we want to show the type substitution lemma. Unfortunately,
       
    51   we have to prove a slightly more general version of it, where
       
    52   the variable being substituted occurs somewhere inside the 
       
    53   context.
       
    54 *}
       
    55 
       
    56 lemma type_substitution_aux:
       
    57   assumes a: "\<Delta> @ [(x, T')] @ \<Gamma> \<turnstile> e : T"
       
    58   and     b: "\<Gamma> \<turnstile> e' : T'"
       
    59   shows "\<Delta> @ \<Gamma> \<turnstile> e[x ::= e'] : T" 
       
    60 using a b 
       
    61 proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, T')] @ \<Gamma>" e T avoiding: x e' \<Delta> rule: typing.strong_induct)
       
    62   case (t_Var y T x e' \<Delta>)
       
    63   have a1: "valid (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact
       
    64   have a2: "(y,T) \<in> set (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact 
       
    65   have a3: "\<Gamma> \<turnstile> e' : T'" by fact
       
    66   
       
    67   from a1 have a4: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert)
       
    68   { assume eq: "x = y"
       
    69     
       
    70     have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" sorry
       
    71   }
       
    72   moreover
       
    73   { assume ineq: "x \<noteq> y"
       
    74     from a2 have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" using ineq by simp
       
    75     then have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using ineq a4 by auto
       
    76   }
       
    77   ultimately show "\<Delta> @ \<Gamma> \<turnstile> Var y[x::=e'] : T" by blast
       
    78 next
       
    79   case (t_Lam y T1 t T2 x e' \<Delta>)
       
    80   have a1: "atom y \<sharp> e'" by fact
       
    81   have a2: "atom y \<sharp> \<Delta> @ [(x, T')] @ \<Gamma>" by fact
       
    82   have a3: "\<Gamma> \<turnstile> e' : T'" by fact 
       
    83   have ih: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> ((y, T1) # \<Delta>) @ \<Gamma> \<turnstile> t [x ::= e'] : T2" 
       
    84     using t_Lam(6)[of "(y, T1) # \<Delta>"] by auto 
       
    85   
       
    86 
       
    87   show "\<Delta> @ \<Gamma> \<turnstile> (Lam [y]. t)[x ::= e'] : T1 \<rightarrow> T2" sorry
       
    88 next
       
    89   case (t_App t1 T1 T2 t2 x e' \<Delta>)
       
    90   have ih1: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> t1 [x ::= e'] : T1 \<rightarrow> T2" using t_App(2) by auto 
       
    91   have ih2: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> t2 [x ::= e'] : T1" using t_App(4) by auto 
       
    92   have a: "\<Gamma> \<turnstile> e' : T'" by fact
       
    93 
       
    94   show "\<Delta> @ \<Gamma> \<turnstile> App t1 t2 [x ::= e'] : T2" sorry
       
    95 qed 
       
    96 
       
    97 text {*
       
    98   From this we can derive the usual version of the substitution
       
    99   lemma.
       
   100 *}
       
   101 
       
   102 corollary type_substitution:
       
   103   assumes a: "(x, T') # \<Gamma> \<turnstile> e : T"
       
   104   and     b: "\<Gamma> \<turnstile> e' : T'"
       
   105   shows "\<Gamma> \<turnstile> e[x ::= e'] : T"
       
   106 using a b type_substitution_aux[of "[]"]
       
   107 by auto
       
   108 
       
   109 
       
   110 section {* Type Preservation *}
       
   111 
       
   112 text {*
       
   113   Finally we are in a position to establish the type preservation
       
   114   property. We just need the following two inversion rules for
       
   115   particualr typing instances.
       
   116 *}
       
   117 
       
   118 lemma t_App_elim:
       
   119   assumes a: "\<Gamma> \<turnstile> App t1 t2 : T"
       
   120   obtains T' where "\<Gamma> \<turnstile> t1 : T' \<rightarrow> T" "\<Gamma> \<turnstile> t2 : T'"
       
   121 using a
       
   122 by (cases) (auto simp add: lam.eq_iff lam.distinct)
       
   123 
       
   124 text {* we have not yet generated strong elimination rules *}
       
   125 lemma t_Lam_elim:
       
   126   assumes ty: "\<Gamma> \<turnstile> Lam [x].t : T" 
       
   127   and     fc: "atom x \<sharp> \<Gamma>" 
       
   128   obtains T1 T2 where "T = T1 \<rightarrow> T2" "(x, T1) # \<Gamma> \<turnstile> t : T2"
       
   129 using ty fc
       
   130 apply(cases)
       
   131 apply(auto simp add: lam.eq_iff lam.distinct ty.eq_iff)
       
   132 apply(auto simp add: Abs1_eq_iff)
       
   133 apply(rotate_tac 3)
       
   134 apply(drule_tac p="(x \<leftrightarrow> xa)" in permute_boolI)
       
   135 apply(perm_simp)
       
   136 apply(auto simp add: flip_def swap_fresh_fresh ty_fresh)
       
   137 done
       
   138 
       
   139 
       
   140 section {* EXERCISE 17 *}
       
   141 
       
   142 text {*
       
   143   Fill in the gaps in the t_Lam case. You will need
       
   144   the type substitution lemma proved above. 
       
   145 *}
       
   146 
       
   147 theorem cbv_type_preservation:
       
   148   assumes a: "t \<longrightarrow>cbv t'"
       
   149   and     b: "\<Gamma> \<turnstile> t : T" 
       
   150   shows "\<Gamma> \<turnstile> t' : T"
       
   151 using a b
       
   152 proof (nominal_induct avoiding: \<Gamma> T rule: cbv.strong_induct)
       
   153   case (cbv1 v x t \<Gamma> T) 
       
   154   have fc: "atom x \<sharp> \<Gamma>" by fact
       
   155   have "\<Gamma> \<turnstile> App (Lam [x]. t) v : T" by fact
       
   156   then obtain T' where 
       
   157       *: "\<Gamma> \<turnstile> Lam [x]. t : T' \<rightarrow> T" and 
       
   158      **: "\<Gamma> \<turnstile> v : T'" by (rule t_App_elim)
       
   159   have "(x, T') # \<Gamma> \<turnstile> t : T" using * fc by (rule t_Lam_elim) (simp add: ty.eq_iff)
       
   160 
       
   161   show "\<Gamma> \<turnstile> t [x ::= v] : T " sorry
       
   162 qed (auto elim!: t_App_elim)
       
   163 
       
   164 text {*
       
   165   We can easily extend this to sequences of cbv* reductions.
       
   166 *}
       
   167 
       
   168 corollary cbvs_type_preservation:
       
   169   assumes a: "t \<longrightarrow>cbv* t'"
       
   170   and     b: "\<Gamma> \<turnstile> t : T" 
       
   171   shows "\<Gamma> \<turnstile> t' : T"
       
   172 using a b
       
   173 by (induct) (auto intro: cbv_type_preservation)
       
   174 
       
   175 text {* 
       
   176   The type-preservation property for the machine and 
       
   177   evaluation relation. 
       
   178 *}
       
   179 
       
   180 theorem machine_type_preservation:
       
   181   assumes a: "<t, []> \<mapsto>* <t', []>"
       
   182   and     b: "\<Gamma> \<turnstile> t : T" 
       
   183   shows "\<Gamma> \<turnstile> t' : T"
       
   184 proof -
       
   185   have "t \<longrightarrow>cbv* t'" using a machines_implies_cbvs by simp
       
   186   then show "\<Gamma> \<turnstile> t' : T" using b cbvs_type_preservation by simp
       
   187 qed
       
   188 
       
   189 theorem eval_type_preservation:
       
   190   assumes a: "t \<Down> t'"
       
   191   and     b: "\<Gamma> \<turnstile> t : T" 
       
   192   shows "\<Gamma> \<turnstile> t' : T"
       
   193 proof -
       
   194   have "<t, []> \<mapsto>* <t', []>" using a eval_implies_machines by simp
       
   195   then show "\<Gamma> \<turnstile> t' : T" using b machine_type_preservation by simp
       
   196 qed
       
   197 
       
   198 text {* The Progress Property *}
       
   199 
       
   200 lemma canonical_tArr:
       
   201   assumes a: "[] \<turnstile> t : T1 \<rightarrow> T2"
       
   202   and     b: "val t"
       
   203   obtains x t' where "t = Lam [x].t'"
       
   204 using b a by (induct) (auto) 
       
   205 
       
   206 theorem progress:
       
   207   assumes a: "[] \<turnstile> t : T"
       
   208   shows "(\<exists>t'. t \<longrightarrow>cbv t') \<or> (val t)"
       
   209 using a
       
   210 by (induct \<Gamma>\<equiv>"[]::ty_ctx" t T)
       
   211    (auto elim: canonical_tArr simp add: val.simps)
       
   212 
       
   213 text {*
       
   214   Done! Congratulations!
       
   215 *}
       
   216 
       
   217 end
       
   218