Tutorial/Lambda.thy
branchNominal2-Isabelle2011-1
changeset 3070 4b4742aa43f2
parent 3069 78d828f43cdf
child 3071 11f6a561eb4b
equal deleted inserted replaced
3069:78d828f43cdf 3070:4b4742aa43f2
     1 theory Lambda
       
     2 imports "../Nominal/Nominal2" 
       
     3 begin
       
     4 
       
     5 section {* Definitions for Lambda Terms *}
       
     6 
       
     7 
       
     8 text {* type of variables *}
       
     9 
       
    10 atom_decl name
       
    11 
       
    12 
       
    13 subsection {* Alpha-Equated Lambda Terms *}
       
    14 
       
    15 nominal_datatype lam =
       
    16   Var "name"
       
    17 | App "lam" "lam"
       
    18 | Lam x::"name" l::"lam" bind x in l ("Lam [_]. _" [100, 100] 100)
       
    19 
       
    20 
       
    21 text {* some automatically derived theorems *}
       
    22 
       
    23 thm lam.distinct
       
    24 thm lam.eq_iff
       
    25 thm lam.fresh
       
    26 thm lam.size
       
    27 thm lam.exhaust 
       
    28 thm lam.strong_exhaust
       
    29 thm lam.induct
       
    30 thm lam.strong_induct
       
    31 
       
    32 
       
    33 subsection {* Height Function *}
       
    34 
       
    35 nominal_primrec
       
    36   height :: "lam \<Rightarrow> int"
       
    37 where
       
    38   "height (Var x) = 1"
       
    39 | "height (App t1 t2) = max (height t1) (height t2) + 1"
       
    40 | "height (Lam [x].t) = height t + 1"
       
    41 apply(subgoal_tac "\<And>p x r. height_graph x r \<Longrightarrow> height_graph (p \<bullet> x) (p \<bullet> r)") 
       
    42 unfolding eqvt_def
       
    43 apply(rule allI)
       
    44 apply(simp add: permute_fun_def)
       
    45 apply(rule ext)
       
    46 apply(rule ext)
       
    47 apply(simp add: permute_bool_def)
       
    48 apply(rule iffI)
       
    49 apply(drule_tac x="p" in meta_spec)
       
    50 apply(drule_tac x="- p \<bullet> x" in meta_spec)
       
    51 apply(drule_tac x="- p \<bullet> xa" in meta_spec)
       
    52 apply(simp)
       
    53 apply(drule_tac x="-p" in meta_spec)
       
    54 apply(drule_tac x="x" in meta_spec)
       
    55 apply(drule_tac x="xa" in meta_spec)
       
    56 apply(simp)
       
    57 apply(erule height_graph.induct)
       
    58 apply(perm_simp)
       
    59 apply(rule height_graph.intros)
       
    60 apply(perm_simp)
       
    61 apply(rule height_graph.intros)
       
    62 apply(assumption)
       
    63 apply(assumption)
       
    64 apply(perm_simp)
       
    65 apply(rule height_graph.intros)
       
    66 apply(assumption)
       
    67 apply(rule_tac y="x" in lam.exhaust)
       
    68 apply(auto simp add: lam.distinct lam.eq_iff)
       
    69 apply(simp add: Abs_eq_iff alphas)
       
    70 apply(clarify)
       
    71 apply(subst (4) supp_perm_eq[where p="p", symmetric])
       
    72 apply(simp add: pure_supp  fresh_star_def)
       
    73 apply(simp add: eqvt_at_def)
       
    74 done
       
    75 
       
    76 termination
       
    77   by (relation "measure size") (simp_all add: lam.size)
       
    78   
       
    79 
       
    80 subsection {* Capture-Avoiding Substitution *}
       
    81 
       
    82 nominal_primrec
       
    83   subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam"  ("_ [_ ::= _]" [90,90,90] 90)
       
    84 where
       
    85   "(Var x)[y ::= s] = (if x = y then s else (Var x))"
       
    86 | "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])"
       
    87 | "atom x \<sharp> (y, s) \<Longrightarrow> (Lam [x]. t)[y ::= s] = Lam [x].(t[y ::= s])"
       
    88 apply(subgoal_tac "\<And>p x r. subst_graph x r \<Longrightarrow> subst_graph (p \<bullet> x) (p \<bullet> r)") 
       
    89 unfolding eqvt_def
       
    90 apply(rule allI)
       
    91 apply(simp add: permute_fun_def)
       
    92 apply(rule ext)
       
    93 apply(rule ext)
       
    94 apply(simp add: permute_bool_def)
       
    95 apply(rule iffI)
       
    96 apply(drule_tac x="p" in meta_spec)
       
    97 apply(drule_tac x="- p \<bullet> x" in meta_spec)
       
    98 apply(drule_tac x="- p \<bullet> xa" in meta_spec)
       
    99 apply(simp)
       
   100 apply(drule_tac x="-p" in meta_spec)
       
   101 apply(drule_tac x="x" in meta_spec)
       
   102 apply(drule_tac x="xa" in meta_spec)
       
   103 apply(simp)
       
   104 apply(erule subst_graph.induct)
       
   105 apply(perm_simp)
       
   106 apply(rule subst_graph.intros)
       
   107 apply(perm_simp)
       
   108 apply(rule subst_graph.intros)
       
   109 apply(assumption)
       
   110 apply(assumption)
       
   111 apply(perm_simp)
       
   112 apply(rule subst_graph.intros)
       
   113 apply(simp add: fresh_Pair)
       
   114 apply(assumption)
       
   115 apply(auto simp add: lam.distinct lam.eq_iff)
       
   116 apply(rule_tac y="a" and c="(aa, b)" in lam.strong_exhaust)
       
   117 apply(blast)+
       
   118 apply(simp add: fresh_star_def)
       
   119 apply(subgoal_tac "atom xa \<sharp> [[atom x]]lst. t \<and> atom x \<sharp> [[atom xa]]lst. ta")
       
   120 apply(subst (asm) Abs_eq_iff2)
       
   121 apply(simp add: alphas atom_eqvt)
       
   122 apply(clarify)
       
   123 apply(rule trans)
       
   124 apply(rule_tac p="p" in supp_perm_eq[symmetric])
       
   125 apply(rule fresh_star_supp_conv)
       
   126 apply(drule fresh_star_perm_set_conv)
       
   127 apply(simp add: finite_supp)
       
   128 apply(subgoal_tac "{atom (p \<bullet> x), atom x} \<sharp>* ([[atom x]]lst. subst_sumC (t, ya, sa))")
       
   129 apply(auto simp add: fresh_star_def)[1]
       
   130 apply(simp (no_asm) add: fresh_star_def)
       
   131 apply(rule conjI)
       
   132 apply(simp (no_asm) add: Abs_fresh_iff)
       
   133 apply(clarify)
       
   134 apply(drule_tac a="atom (p \<bullet> x)" in fresh_eqvt_at)
       
   135 apply(simp add: finite_supp)
       
   136 apply(simp (no_asm_use) add: fresh_Pair)
       
   137 apply(simp add: Abs_fresh_iff)
       
   138 apply(simp)
       
   139 apply(simp add: Abs_fresh_iff)
       
   140 apply(subgoal_tac "p \<bullet> ya = ya")
       
   141 apply(subgoal_tac "p \<bullet> sa = sa")
       
   142 apply(simp add: atom_eqvt eqvt_at_def)
       
   143 apply(rule perm_supp_eq)
       
   144 apply(auto simp add: fresh_star_def fresh_Pair)[1]
       
   145 apply(rule perm_supp_eq)
       
   146 apply(auto simp add: fresh_star_def fresh_Pair)[1]
       
   147 apply(rule conjI)
       
   148 apply(simp add: Abs_fresh_iff)
       
   149 apply(drule sym)
       
   150 apply(simp add: Abs_fresh_iff)
       
   151 done
       
   152 
       
   153 termination
       
   154   by (relation "measure (\<lambda>(t, _, _). size t)")
       
   155      (simp_all add: lam.size)
       
   156 
       
   157 lemma subst_eqvt[eqvt]:
       
   158   shows "(p \<bullet> t[x ::= s]) = (p \<bullet> t)[(p \<bullet> x) ::= (p \<bullet> s)]"
       
   159 by (induct t x s rule: subst.induct) (simp_all)
       
   160 
       
   161 lemma fresh_fact:
       
   162   assumes a: "atom z \<sharp> s"
       
   163   and b: "z = y \<or> atom z \<sharp> t"
       
   164   shows "atom z \<sharp> t[y ::= s]"
       
   165 using a b
       
   166 by (nominal_induct t avoiding: z y s rule: lam.strong_induct)
       
   167    (auto simp add: lam.fresh fresh_at_base)
       
   168 
       
   169 
       
   170 end
       
   171 
       
   172 
       
   173