1 (*<*) |
|
2 theory Slides7 |
|
3 imports "~~/src/HOL/Library/LaTeXsugar" "Main" |
|
4 begin |
|
5 |
|
6 declare [[show_question_marks = false]] |
|
7 |
|
8 notation (latex output) |
|
9 set ("_") and |
|
10 Cons ("_::/_" [66,65] 65) |
|
11 |
|
12 (*>*) |
|
13 |
|
14 text_raw {* |
|
15 \renewcommand{\slidecaption}{Beijing, 29.~April 2011} |
|
16 |
|
17 \newcommand{\abst}[2]{#1.#2}% atom-abstraction |
|
18 \newcommand{\pair}[2]{\langle #1,#2\rangle} % pairing |
|
19 \newcommand{\susp}{{\boldsymbol{\cdot}}}% for suspensions |
|
20 \newcommand{\unit}{\langle\rangle}% unit |
|
21 \newcommand{\app}[2]{#1\,#2}% application |
|
22 \newcommand{\eqprob}{\mathrel{{\approx}?}} |
|
23 \newcommand{\freshprob}{\mathrel{\#?}} |
|
24 \newcommand{\redu}[1]{\stackrel{#1}{\Longrightarrow}}% reduction |
|
25 \newcommand{\id}{\varepsilon}% identity substitution |
|
26 |
|
27 \newcommand{\bl}[1]{\textcolor{blue}{#1}} |
|
28 \newcommand{\gr}[1]{\textcolor{gray}{#1}} |
|
29 \newcommand{\rd}[1]{\textcolor{red}{#1}} |
|
30 |
|
31 \newcommand{\ok}{\includegraphics[scale=0.07]{ok.png}} |
|
32 \newcommand{\notok}{\includegraphics[scale=0.07]{notok.png}} |
|
33 \newcommand{\largenotok}{\includegraphics[scale=1]{notok.png}} |
|
34 |
|
35 \renewcommand{\Huge}{\fontsize{61.92}{77}\selectfont} |
|
36 \newcommand{\veryHuge}{\fontsize{74.3}{93}\selectfont} |
|
37 \newcommand{\VeryHuge}{\fontsize{89.16}{112}\selectfont} |
|
38 \newcommand{\VERYHuge}{\fontsize{107}{134}\selectfont} |
|
39 |
|
40 \newcommand{\LL}{$\mathbb{L}\,$} |
|
41 |
|
42 |
|
43 \pgfdeclareradialshading{smallbluesphere}{\pgfpoint{0.5mm}{0.5mm}}% |
|
44 {rgb(0mm)=(0,0,0.9); |
|
45 rgb(0.9mm)=(0,0,0.7); |
|
46 rgb(1.3mm)=(0,0,0.5); |
|
47 rgb(1.4mm)=(1,1,1)} |
|
48 |
|
49 \def\myitemi{\begin{pgfpicture}{-1ex}{-0.55ex}{1ex}{1ex} |
|
50 \usebeamercolor[fg]{subitem projected} |
|
51 {\pgftransformscale{0.8}\pgftext{\normalsize\pgfuseshading{bigsphere}}} |
|
52 \pgftext{% |
|
53 \usebeamerfont*{subitem projected}} |
|
54 \end{pgfpicture}} |
|
55 |
|
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
57 \mode<presentation>{ |
|
58 \begin{frame}<1>[t] |
|
59 \frametitle{% |
|
60 \begin{tabular}{@ {\hspace{-3mm}}c@ {}} |
|
61 \\ |
|
62 \LARGE Verifying a Regular Expression\\[-1mm] |
|
63 \LARGE Matcher and Formal Language\\[-1mm] |
|
64 \LARGE Theory\\[5mm] |
|
65 \end{tabular}} |
|
66 \begin{center} |
|
67 Christian Urban\\ |
|
68 \small Technical University of Munich, Germany |
|
69 \end{center} |
|
70 |
|
71 |
|
72 \begin{center} |
|
73 \small joint work with Chunhan Wu and Xingyuan Zhang from the PLA |
|
74 University of Science and Technology in Nanjing |
|
75 \end{center} |
|
76 \end{frame}} |
|
77 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
78 |
|
79 *} |
|
80 |
|
81 |
|
82 text_raw {* |
|
83 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
84 \mode<presentation>{ |
|
85 \begin{frame}[c] |
|
86 \frametitle{This Talk: 3 Points} |
|
87 \large |
|
88 \begin{itemize} |
|
89 \item It is easy to make mistakes.\bigskip |
|
90 \item Theorem provers can prevent mistakes, {\bf if} the problem |
|
91 is formulated so that it is suitable for theorem provers.\bigskip |
|
92 \item This re-formulation can be done, even in domains where |
|
93 we least expect it. |
|
94 \end{itemize} |
|
95 |
|
96 \end{frame}} |
|
97 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
98 *} |
|
99 |
|
100 text_raw {* |
|
101 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
102 \mode<presentation>{ |
|
103 \begin{frame}<1->[t] |
|
104 \frametitle{Regular Expressions} |
|
105 |
|
106 \begin{textblock}{6}(2,4) |
|
107 \begin{tabular}{@ {}rrl} |
|
108 \bl{r} & \bl{$::=$} & \bl{$\varnothing$}\\ |
|
109 & \bl{$\mid$} & \bl{[]}\\ |
|
110 & \bl{$\mid$} & \bl{c}\\ |
|
111 & \bl{$\mid$} & \bl{r$_1$ + r$_2$}\\ |
|
112 & \bl{$\mid$} & \bl{r$_1$ $\cdot$ r$_2$}\\ |
|
113 & \bl{$\mid$} & \bl{r$^*$}\\ |
|
114 \end{tabular} |
|
115 \end{textblock} |
|
116 |
|
117 \begin{textblock}{6}(8,3.5) |
|
118 \includegraphics[scale=0.35]{Screen1.png} |
|
119 \end{textblock} |
|
120 |
|
121 \begin{textblock}{6}(10.2,2.8) |
|
122 \footnotesize Isabelle: |
|
123 \end{textblock} |
|
124 |
|
125 \only<2>{ |
|
126 \begin{textblock}{9}(3.6,11.8) |
|
127 \bl{matches r s $\;\Longrightarrow\;$ true $\vee$ false}\\[3.5mm] |
|
128 |
|
129 \hspace{10mm}\begin{tikzpicture} |
|
130 \coordinate (m1) at (0.4,1); |
|
131 \draw (0,0.3) node (m2) {\small\color{gray}rexp}; |
|
132 \path[overlay, ->, line width = 0.5mm, shorten <=-1mm, draw = gray] (m2) edge (m1); |
|
133 |
|
134 \coordinate (s1) at (0.81,1); |
|
135 \draw (1.3,0.3) node (s2) {\small\color{gray} string}; |
|
136 \path[overlay, ->, line width = 0.5mm, shorten <=-1mm, draw = gray] (s2) edge (s1); |
|
137 \end{tikzpicture} |
|
138 \end{textblock}} |
|
139 |
|
140 |
|
141 |
|
142 \end{frame}} |
|
143 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
144 *} |
|
145 |
|
146 text_raw {* |
|
147 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
148 \mode<presentation>{ |
|
149 \begin{frame}<1->[t] |
|
150 \frametitle{Specification} |
|
151 |
|
152 \small |
|
153 \begin{textblock}{6}(0,3.5) |
|
154 \begin{tabular}{r@ {\hspace{0.5mm}}r@ {\hspace{1.5mm}}c@ {\hspace{1.5mm}}l} |
|
155 \multicolumn{4}{c}{rexp $\Rightarrow$ set of strings}\bigskip\\ |
|
156 &\bl{\LL ($\varnothing$)} & \bl{$\dn$} & \bl{$\varnothing$}\\ |
|
157 &\bl{\LL ([])} & \bl{$\dn$} & \bl{\{[]\}}\\ |
|
158 &\bl{\LL (c)} & \bl{$\dn$} & \bl{\{c\}}\\ |
|
159 &\bl{\LL (r$_1$ + r$_2$)} & \bl{$\dn$} & \bl{\LL (r$_1$) $\cup$ \LL (r$_2$)}\\ |
|
160 \rd{$\Rightarrow$} &\bl{\LL (r$_1$ $\cdot$ r$_2$)} & \bl{$\dn$} & \bl{\LL (r$_1$) ;; \LL (r$_2$)}\\ |
|
161 \rd{$\Rightarrow$} &\bl{\LL (r$^*$)} & \bl{$\dn$} & \bl{(\LL (r))$^\star$}\\ |
|
162 \end{tabular} |
|
163 \end{textblock} |
|
164 |
|
165 \begin{textblock}{9}(7.3,3) |
|
166 {\mbox{}\hspace{2cm}\footnotesize Isabelle:\smallskip} |
|
167 \includegraphics[scale=0.325]{Screen3.png} |
|
168 \end{textblock} |
|
169 |
|
170 \end{frame}} |
|
171 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
172 *} |
|
173 |
|
174 |
|
175 text_raw {* |
|
176 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
177 \mode<presentation>{ |
|
178 \begin{frame}<1->[t] |
|
179 \frametitle{Version 1} |
|
180 \small |
|
181 \mbox{}\\[-8mm]\mbox{} |
|
182 |
|
183 \begin{center}\def\arraystretch{1.05} |
|
184 \begin{tabular}{@ {\hspace{-5mm}}l@ {\hspace{2.5mm}}c@ {\hspace{2.5mm}}l@ {}} |
|
185 \bl{match [] []} & \bl{$=$} & \bl{true}\\ |
|
186 \bl{match [] (c::s)} & \bl{$=$} & \bl{false}\\ |
|
187 \bl{match ($\varnothing$::rs) s} & \bl{$=$} & \bl{false}\\ |
|
188 \bl{match ([]::rs) s} & \bl{$=$} & \bl{match rs s}\\ |
|
189 \bl{match (c::rs) []} & \bl{$=$} & \bl{false}\\ |
|
190 \bl{match (c::rs) (d::s)} & \bl{$=$} & \bl{if c = d then match rs s else false}\\ |
|
191 \bl{match (r$_1$ + r$_2$::rs) s} & \bl{$=$} & \bl{match (r$_1$::rs) s $\vee$ match (r$_2$::rs) s}\\ |
|
192 \bl{match (r$_1$ $\cdot$ r$_2$::rs) s} & \bl{$=$} & \bl{match (r$_1$::r$_2$::rs) s}\\ |
|
193 \bl{match (r$^*$::rs) s} & \bl{$=$} & \bl{match rs s $\vee$ match (r::r$^*$::rs) s}\\ |
|
194 \end{tabular} |
|
195 \end{center} |
|
196 |
|
197 \begin{textblock}{9}(0.2,1.6) |
|
198 \hspace{10mm}\begin{tikzpicture} |
|
199 \coordinate (m1) at (0.44,-0.5); |
|
200 \draw (0,0.3) node (m2) {\small\color{gray}\mbox{}\hspace{-9mm}list of rexps}; |
|
201 \path[overlay, ->, line width = 0.5mm, shorten <=-1mm, draw = gray] (m2) edge (m1); |
|
202 |
|
203 \coordinate (s1) at (0.86,-0.5); |
|
204 \draw (1.5,0.3) node (s2) {\small\color{gray} string}; |
|
205 \path[overlay, ->, line width = 0.5mm, shorten <=-1mm, draw = gray] (s2) edge (s1); |
|
206 \end{tikzpicture} |
|
207 \end{textblock} |
|
208 |
|
209 \begin{textblock}{9}(2.8,11.8) |
|
210 \bl{matches$_1$ r s $\;=\;$ match [r] s} |
|
211 \end{textblock} |
|
212 |
|
213 \end{frame}} |
|
214 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
215 *} |
|
216 |
|
217 text_raw {* |
|
218 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
219 \mode<presentation>{ |
|
220 \begin{frame}<1->[c] |
|
221 \frametitle{Testing} |
|
222 |
|
223 \small |
|
224 Every good programmer should do thourough tests: |
|
225 |
|
226 \begin{center} |
|
227 \begin{tabular}{@ {\hspace{-20mm}}lcl} |
|
228 \bl{matches$_1$ (a$\cdot$b)$^*\;$ []} & \bl{$\mapsto$} & \bl{true}\\ |
|
229 \bl{matches$_1$ (a$\cdot$b)$^*\;$ ab} & \bl{$\mapsto$} & \bl{true}\\ |
|
230 \bl{matches$_1$ (a$\cdot$b)$^*\;$ aba} & \bl{$\mapsto$} & \bl{false}\\ |
|
231 \bl{matches$_1$ (a$\cdot$b)$^*\;$ abab} & \bl{$\mapsto$} & \bl{true}\\ |
|
232 \bl{matches$_1$ (a$\cdot$b)$^*\;$ abaa} & \bl{$\mapsto$} & \bl{false}\medskip\\ |
|
233 \onslide<2->{\bl{matches$_1$ x$\cdot$(0$|$1)$^*\;$ x} & \bl{$\mapsto$} & \bl{true}}\\ |
|
234 \onslide<2->{\bl{matches$_1$ x$\cdot$(0$|$1)$^*\;$ x0} & \bl{$\mapsto$} & \bl{true}}\\ |
|
235 \onslide<2->{\bl{matches$_1$ x$\cdot$(0$|$1)$^*\;$ x3} & \bl{$\mapsto$} & \bl{false}} |
|
236 \end{tabular} |
|
237 \end{center} |
|
238 |
|
239 \onslide<3-> |
|
240 {Looks OK \ldots let's ship it to customers\hspace{5mm} |
|
241 \raisebox{-5mm}{\includegraphics[scale=0.05]{sun.png}}} |
|
242 |
|
243 \end{frame}} |
|
244 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
245 *} |
|
246 |
|
247 text_raw {* |
|
248 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
249 \mode<presentation>{ |
|
250 \begin{frame}<1->[c] |
|
251 \frametitle{Version 1} |
|
252 |
|
253 \only<1->{Several hours later\ldots}\pause |
|
254 |
|
255 |
|
256 \begin{center} |
|
257 \begin{tabular}{@ {\hspace{0mm}}lcl} |
|
258 \bl{matches$_1$ []$^*$ s} & \bl{$\mapsto$} & loops\\ |
|
259 \onslide<4->{\bl{matches$_1$ ([] + \ldots)$^*$ s} & \bl{$\mapsto$} & loops\\} |
|
260 \end{tabular} |
|
261 \end{center} |
|
262 |
|
263 \small |
|
264 \onslide<3->{ |
|
265 \begin{center} |
|
266 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} |
|
267 \ldots\\ |
|
268 \bl{match ([]::rs) s} & \bl{$=$} & \bl{match rs s}\\ |
|
269 \ldots\\ |
|
270 \bl{match (r$^*$::rs) s} & \bl{$=$} & \bl{match rs s $\vee$ match (r::r$^*$::rs) s}\\ |
|
271 \end{tabular} |
|
272 \end{center}} |
|
273 |
|
274 |
|
275 \end{frame}} |
|
276 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
277 *} |
|
278 |
|
279 |
|
280 text_raw {* |
|
281 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
282 \mode<presentation>{ |
|
283 \begin{frame}<1->[t] |
|
284 \frametitle{Testing} |
|
285 |
|
286 \begin{itemize} |
|
287 \item While testing is an important part in the process of programming development\pause\ldots |
|
288 |
|
289 \item we can only test a {\bf finite} amount of examples.\bigskip\pause |
|
290 |
|
291 \begin{center} |
|
292 \colorbox{cream} |
|
293 {\gr{\begin{minipage}{10cm} |
|
294 ``Testing can only show the presence of errors, never their |
|
295 absence.'' (Edsger W.~Dijkstra) |
|
296 \end{minipage}}} |
|
297 \end{center}\bigskip\pause |
|
298 |
|
299 \item In a theorem prover we can establish properties that apply to |
|
300 {\bf all} input and {\bf all} output. |
|
301 |
|
302 \end{itemize} |
|
303 |
|
304 \end{frame}} |
|
305 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
306 *} |
|
307 |
|
308 |
|
309 text_raw {* |
|
310 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
311 \mode<presentation>{ |
|
312 \begin{frame}<1->[t] |
|
313 \frametitle{Version 2} |
|
314 \mbox{}\\[-14mm]\mbox{} |
|
315 |
|
316 \small |
|
317 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}ll@ {}} |
|
318 \bl{nullable ($\varnothing$)} & \bl{$=$} & \bl{false} &\\ |
|
319 \bl{nullable ([])} & \bl{$=$} & \bl{true} &\\ |
|
320 \bl{nullable (c)} & \bl{$=$} & \bl{false} &\\ |
|
321 \bl{nullable (r$_1$ + r$_2$)} & \bl{$=$} & \bl{nullable r$_1$ $\vee$ nullable r$_2$} & \\ |
|
322 \bl{nullable (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{nullable r$_1$ $\wedge$ nullable r$_2$} & \\ |
|
323 \bl{nullable (r$^*$)} & \bl{$=$} & \bl{true} & \\ |
|
324 \end{tabular}\medskip |
|
325 |
|
326 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}} |
|
327 \bl{der c ($\varnothing$)} & \bl{$=$} & \bl{$\varnothing$} & \\ |
|
328 \bl{der c ([])} & \bl{$=$} & \bl{$\varnothing$} & \\ |
|
329 \bl{der c (d)} & \bl{$=$} & \bl{if c = d then [] else $\varnothing$} & \\ |
|
330 \bl{der c (r$_1$ + r$_2$)} & \bl{$=$} & \bl{(der c r$_1$) + (der c r$_2$)} & \\ |
|
331 \bl{der c (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{((der c r$_1$) $\cdot$ r$_2$)} & \\ |
|
332 & & \bl{\;\;\;\;+ (if nullable r$_1$ then der c r$_2$ else $\varnothing$)}\\ |
|
333 \bl{der c (r$^*$)} & \bl{$=$} & \bl{(der c r) $\cdot$ r$^*$} &\smallskip\\ |
|
334 |
|
335 \bl{derivative r []} & \bl{$=$} & \bl{r} & \\ |
|
336 \bl{derivative r (c::s)} & \bl{$=$} & \bl{derivative (der c r) s} & \\ |
|
337 \end{tabular}\medskip |
|
338 |
|
339 \bl{matches$_2$ r s $=$ nullable (derivative r s)} |
|
340 |
|
341 \begin{textblock}{6}(9.5,0.9) |
|
342 \begin{flushright} |
|
343 \color{gray}``if r matches []'' |
|
344 \end{flushright} |
|
345 \end{textblock} |
|
346 |
|
347 \begin{textblock}{6}(9.5,6.18) |
|
348 \begin{flushright} |
|
349 \color{gray}``derivative w.r.t.~a char'' |
|
350 \end{flushright} |
|
351 \end{textblock} |
|
352 |
|
353 \begin{textblock}{6}(9.5,12.1) |
|
354 \begin{flushright} |
|
355 \color{gray}``deriv.~w.r.t.~a string'' |
|
356 \end{flushright} |
|
357 \end{textblock} |
|
358 |
|
359 \begin{textblock}{6}(9.5,13.98) |
|
360 \begin{flushright} |
|
361 \color{gray}``main'' |
|
362 \end{flushright} |
|
363 \end{textblock} |
|
364 |
|
365 \end{frame}} |
|
366 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
367 *} |
|
368 |
|
369 text_raw {* |
|
370 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
371 \mode<presentation>{ |
|
372 \begin{frame}<1->[t] |
|
373 \frametitle{Is the Matcher Error-Free?} |
|
374 |
|
375 We expect that |
|
376 |
|
377 \begin{center} |
|
378 \begin{tabular}{lcl} |
|
379 \bl{matches$_2$ r s = true} & \only<1>{\rd{$\Longrightarrow\,\,$}}\only<2>{\rd{$\Longleftarrow\,\,$}}% |
|
380 \only<3->{\rd{$\Longleftrightarrow$}} & \bl{s $\in$ \LL(r)}\\ |
|
381 \bl{matches$_2$ r s = false} & \only<1>{\rd{$\Longrightarrow\,\,$}}\only<2>{\rd{$\Longleftarrow\,\,$}}% |
|
382 \only<3->{\rd{$\Longleftrightarrow$}} & \bl{s $\notin$ \LL(r)}\\ |
|
383 \end{tabular} |
|
384 \end{center} |
|
385 \pause\pause\bigskip |
|
386 By \alert<4->{induction}, we can {\bf prove} these properties.\bigskip |
|
387 |
|
388 \begin{tabular}{lrcl} |
|
389 Lemmas: & \bl{nullable (r)} & \bl{$\Longleftrightarrow$} & \bl{[] $\in$ \LL (r)}\\ |
|
390 & \bl{s $\in$ \LL (der c r)} & \bl{$\Longleftrightarrow$} & \bl{(c::s) $\in$ \LL (r)}\\ |
|
391 \end{tabular} |
|
392 |
|
393 \only<4->{ |
|
394 \begin{textblock}{3}(0.9,4.5) |
|
395 \rd{\huge$\forall$\large{}r s.} |
|
396 \end{textblock}} |
|
397 \end{frame}} |
|
398 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
399 *} |
|
400 |
|
401 text_raw {* |
|
402 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
403 \mode<presentation>{ |
|
404 \begin{frame}<1>[c] |
|
405 \frametitle{ |
|
406 \begin{tabular}{c} |
|
407 \mbox{}\\[23mm] |
|
408 \LARGE Demo |
|
409 \end{tabular}} |
|
410 |
|
411 \end{frame}} |
|
412 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
413 *} |
|
414 |
|
415 |
|
416 text_raw {* |
|
417 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
418 \mode<presentation>{ |
|
419 \begin{frame}<1->[t] |
|
420 |
|
421 \mbox{}\\[-2mm] |
|
422 |
|
423 \small |
|
424 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}ll@ {}} |
|
425 \bl{nullable (NULL)} & \bl{$=$} & \bl{false} &\\ |
|
426 \bl{nullable (EMPTY)} & \bl{$=$} & \bl{true} &\\ |
|
427 \bl{nullable (CHR c)} & \bl{$=$} & \bl{false} &\\ |
|
428 \bl{nullable (ALT r$_1$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) orelse (nullable r$_2$)} & \\ |
|
429 \bl{nullable (SEQ r$_1$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) andalso (nullable r$_2$)} & \\ |
|
430 \bl{nullable (STAR r)} & \bl{$=$} & \bl{true} & \\ |
|
431 \end{tabular}\medskip |
|
432 |
|
433 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}} |
|
434 \bl{der c (NULL)} & \bl{$=$} & \bl{NULL} & \\ |
|
435 \bl{der c (EMPTY)} & \bl{$=$} & \bl{NULL} & \\ |
|
436 \bl{der c (CHR d)} & \bl{$=$} & \bl{if c=d then EMPTY else NULL} & \\ |
|
437 \bl{der c (ALT r$_1$ r$_2$)} & \bl{$=$} & \bl{ALT (der c r$_1$) (der c r$_2$)} & \\ |
|
438 \bl{der c (SEQ r$_1$ r$_2$)} & \bl{$=$} & \bl{ALT (SEQ (der c r$_1$) r$_2$)} & \\ |
|
439 & & \bl{\phantom{ALT} (if nullable r$_1$ then der c r$_2$ else NULL)}\\ |
|
440 \bl{der c (STAR r)} & \bl{$=$} & \bl{SEQ (der c r) (STAR r)} &\smallskip\\ |
|
441 |
|
442 \bl{derivative r []} & \bl{$=$} & \bl{r} & \\ |
|
443 \bl{derivative r (c::s)} & \bl{$=$} & \bl{derivative (der c r) s} & \\ |
|
444 \end{tabular}\medskip |
|
445 |
|
446 \bl{matches r s $=$ nullable (derivative r s)} |
|
447 |
|
448 \only<2>{ |
|
449 \begin{textblock}{8}(1.5,4) |
|
450 \includegraphics[scale=0.3]{approved.png} |
|
451 \end{textblock}} |
|
452 |
|
453 \end{frame}} |
|
454 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
455 *} |
|
456 |
|
457 |
|
458 text_raw {* |
|
459 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
460 \mode<presentation>{ |
|
461 \begin{frame}[c] |
|
462 \frametitle{No Automata?} |
|
463 |
|
464 You might be wondering why I did not use any automata? |
|
465 |
|
466 \begin{itemize} |
|
467 \item {\bf Def.:} A \alert{regular language} is one where there is a DFA that |
|
468 recognises it.\bigskip\pause |
|
469 \end{itemize} |
|
470 |
|
471 |
|
472 There are many reasons why this is a good definition:\medskip |
|
473 \begin{itemize} |
|
474 \item pumping lemma |
|
475 \item closure properties of regular languages\\ (e.g.~closure under complement) |
|
476 \end{itemize} |
|
477 |
|
478 \end{frame}} |
|
479 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
480 |
|
481 *} |
|
482 |
|
483 text_raw {* |
|
484 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
485 \mode<presentation>{ |
|
486 \begin{frame}[t] |
|
487 \frametitle{Really Bad News!} |
|
488 |
|
489 DFAs are bad news for formalisations in theorem provers. They might |
|
490 be represented as: |
|
491 |
|
492 \begin{itemize} |
|
493 \item graphs |
|
494 \item matrices |
|
495 \item partial functions |
|
496 \end{itemize} |
|
497 |
|
498 All constructions are messy to reason about.\bigskip\bigskip |
|
499 \pause |
|
500 |
|
501 \small |
|
502 \only<2>{ |
|
503 Constable et al needed (on and off) 18 months for a 3-person team |
|
504 to formalise automata theory in Nuprl including Myhill-Nerode. There is |
|
505 only very little other formalised work on regular languages I know of |
|
506 in Coq, Isabelle and HOL.} |
|
507 \only<3>{Typical textbook reasoning goes like: ``\ldots if \smath{M} and \smath{N} are any two |
|
508 automata with no inaccessible states \ldots'' |
|
509 } |
|
510 |
|
511 \end{frame}} |
|
512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
513 |
|
514 *} |
|
515 |
|
516 text_raw {* |
|
517 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
518 \mode<presentation>{ |
|
519 \begin{frame}[c] |
|
520 \frametitle{} |
|
521 \large |
|
522 \begin{center} |
|
523 \begin{tabular}{p{9cm}} |
|
524 My point:\bigskip\\ |
|
525 |
|
526 The theory about regular languages can be reformulated |
|
527 to be more\\ suitable for theorem proving. |
|
528 \end{tabular} |
|
529 \end{center} |
|
530 \end{frame}} |
|
531 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
532 *} |
|
533 |
|
534 text_raw {* |
|
535 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
536 \mode<presentation>{ |
|
537 \begin{frame}[c] |
|
538 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
539 |
|
540 \begin{itemize} |
|
541 \item provides necessary and suf\!ficient conditions for a language |
|
542 being regular (pumping lemma only necessary)\medskip |
|
543 |
|
544 \item will help with closure properties of regular languages\bigskip\pause |
|
545 |
|
546 \item key is the equivalence relation:\smallskip |
|
547 \begin{center} |
|
548 \smath{x \approx_{L} y \,\dn\, \forall z.\; x @ z \in L \Leftrightarrow y @ z \in L} |
|
549 \end{center} |
|
550 \end{itemize} |
|
551 |
|
552 \end{frame}} |
|
553 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
554 *} |
|
555 |
|
556 text_raw {* |
|
557 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
558 \mode<presentation>{ |
|
559 \begin{frame}[c] |
|
560 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
561 |
|
562 \mbox{}\\[5cm] |
|
563 |
|
564 \begin{itemize} |
|
565 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_L) \;\Leftrightarrow\; L\; \text{is regular}} |
|
566 \end{itemize} |
|
567 |
|
568 \end{frame}} |
|
569 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
570 |
|
571 *} |
|
572 |
|
573 text_raw {* |
|
574 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
575 \mode<presentation>{ |
|
576 \begin{frame}[c] |
|
577 \frametitle{\LARGE Equivalence Classes} |
|
578 |
|
579 \begin{itemize} |
|
580 \item \smath{L = []} |
|
581 \begin{center} |
|
582 \smath{\Big\{\{[]\},\; U\!N\!IV - \{[]\}\Big\}} |
|
583 \end{center}\bigskip\bigskip |
|
584 |
|
585 \item \smath{L = [c]} |
|
586 \begin{center} |
|
587 \smath{\Big\{\{[]\},\; \{[c]\},\; U\!N\!IV - \{[], [c]\}\Big\}} |
|
588 \end{center}\bigskip\bigskip |
|
589 |
|
590 \item \smath{L = \varnothing} |
|
591 \begin{center} |
|
592 \smath{\Big\{U\!N\!IV\Big\}} |
|
593 \end{center} |
|
594 |
|
595 \end{itemize} |
|
596 |
|
597 \end{frame}} |
|
598 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
599 |
|
600 *} |
|
601 |
|
602 text_raw {* |
|
603 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
604 \mode<presentation>{ |
|
605 \begin{frame}[c] |
|
606 \frametitle{\LARGE Regular Languages} |
|
607 |
|
608 \begin{itemize} |
|
609 \item \smath{L} is regular \smath{\dn} if there is an automaton \smath{M} |
|
610 such that \smath{\mathbb{L}(M) = L}\\[1.5cm] |
|
611 |
|
612 \item Myhill-Nerode: |
|
613 |
|
614 \begin{center} |
|
615 \begin{tabular}{l} |
|
616 finite $\Rightarrow$ regular\\ |
|
617 \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_L) \Rightarrow \exists r.\; L = \mathbb{L}(r)}\\[3mm] |
|
618 regular $\Rightarrow$ finite\\ |
|
619 \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})} |
|
620 \end{tabular} |
|
621 \end{center} |
|
622 |
|
623 \end{itemize} |
|
624 |
|
625 \end{frame}} |
|
626 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
627 |
|
628 *} |
|
629 |
|
630 text_raw {* |
|
631 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
632 \mode<presentation>{ |
|
633 \begin{frame}[c] |
|
634 \frametitle{\LARGE Final Equiv.~Classes} |
|
635 |
|
636 \mbox{}\\[3cm] |
|
637 |
|
638 \begin{itemize} |
|
639 \item \smath{\text{finals}\,L \dn |
|
640 \{{\lbrack\mkern-2mu\lbrack{s}\rbrack\mkern-2mu\rbrack}_\approx\;|\; s \in L\}}\\ |
|
641 \medskip |
|
642 |
|
643 \item we can prove: \smath{L = \bigcup (\text{finals}\,L)} |
|
644 |
|
645 \end{itemize} |
|
646 |
|
647 \end{frame}} |
|
648 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
649 *} |
|
650 |
|
651 text_raw {* |
|
652 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
653 \mode<presentation>{ |
|
654 \begin{frame}[c] |
|
655 \frametitle{\LARGE Transitions between ECs} |
|
656 |
|
657 \smath{L = \{[c]\}} |
|
658 |
|
659 \begin{tabular}{@ {\hspace{-7mm}}cc} |
|
660 \begin{tabular}{c} |
|
661 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
662 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
663 |
|
664 %\draw[help lines] (0,0) grid (3,2); |
|
665 |
|
666 \node[state,initial] (q_0) {$R_1$}; |
|
667 \node[state,accepting] (q_1) [above right of=q_0] {$R_2$}; |
|
668 \node[state] (q_2) [below right of=q_0] {$R_3$}; |
|
669 |
|
670 \path[->] (q_0) edge node {c} (q_1) |
|
671 edge node [swap] {$\Sigma-{c}$} (q_2) |
|
672 (q_2) edge [loop below] node {$\Sigma$} () |
|
673 (q_1) edge node {$\Sigma$} (q_2); |
|
674 \end{tikzpicture} |
|
675 \end{tabular} |
|
676 & |
|
677 \begin{tabular}[t]{ll} |
|
678 \\[-20mm] |
|
679 \multicolumn{2}{l}{\smath{U\!N\!IV /\!/\approx_L} produces}\\[4mm] |
|
680 |
|
681 \smath{R_1}: & \smath{\{[]\}}\\ |
|
682 \smath{R_2}: & \smath{\{[c]\}}\\ |
|
683 \smath{R_3}: & \smath{U\!N\!IV - \{[], [c]\}}\\[6mm] |
|
684 \multicolumn{2}{l}{\onslide<2->{\smath{X \stackrel{c}{\longrightarrow} Y \dn X ;; [c] \subseteq Y}}} |
|
685 \end{tabular} |
|
686 |
|
687 \end{tabular} |
|
688 |
|
689 \end{frame}} |
|
690 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
691 *} |
|
692 |
|
693 |
|
694 text_raw {* |
|
695 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
696 \mode<presentation>{ |
|
697 \begin{frame}[c] |
|
698 \frametitle{\LARGE Systems of Equations} |
|
699 |
|
700 Inspired by a method of Brzozowski\;'64, we can build an equational system |
|
701 characterising the equivalence classes: |
|
702 |
|
703 \begin{center} |
|
704 \begin{tabular}{@ {\hspace{-20mm}}c} |
|
705 \\[-13mm] |
|
706 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
707 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
708 |
|
709 %\draw[help lines] (0,0) grid (3,2); |
|
710 |
|
711 \node[state,initial] (p_0) {$R_1$}; |
|
712 \node[state,accepting] (p_1) [right of=q_0] {$R_2$}; |
|
713 |
|
714 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
715 edge [loop above] node {b} () |
|
716 (p_1) edge [loop above] node {a} () |
|
717 edge [bend left] node {b} (p_0); |
|
718 \end{tikzpicture}\\ |
|
719 \\[-13mm] |
|
720 \end{tabular} |
|
721 \end{center} |
|
722 |
|
723 \begin{center} |
|
724 \begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
|
725 & \smath{R_1} & \smath{\equiv} & \smath{R_1;b + R_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\ |
|
726 & \smath{R_2} & \smath{\equiv} & \smath{R_1;a + R_2;a}\medskip\\ |
|
727 \onslide<3->{we can prove} |
|
728 & \onslide<3->{\smath{R_1}} & \onslide<3->{\smath{=}} |
|
729 & \onslide<3->{\smath{R_1;; \mathbb{L}(b) \,\cup\, R_2;;\mathbb{L}(b) \,\cup\, \{[]\}}}\\ |
|
730 & \onslide<3->{\smath{R_2}} & \onslide<3->{\smath{=}} |
|
731 & \onslide<3->{\smath{R_1;; \mathbb{L}(a) \,\cup\, R_2;;\mathbb{L}(a)}}\\ |
|
732 \end{tabular} |
|
733 \end{center} |
|
734 |
|
735 \end{frame}} |
|
736 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
737 *} |
|
738 |
|
739 |
|
740 text_raw {* |
|
741 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
742 \mode<presentation>{ |
|
743 \begin{frame}<1>[t] |
|
744 \small |
|
745 |
|
746 \begin{center} |
|
747 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
748 \onslide<1->{\smath{R_1}} & \onslide<1->{\smath{=}} |
|
749 & \onslide<1->{\smath{R_1; b + R_2; b + \lambda;[]}}\\ |
|
750 \onslide<1->{\smath{R_2}} & \onslide<1->{\smath{=}} |
|
751 & \onslide<1->{\smath{R_1; a + R_2; a}}\\ |
|
752 |
|
753 & & & \onslide<2->{by Arden}\\ |
|
754 |
|
755 \onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}} |
|
756 & \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\ |
|
757 \onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}} |
|
758 & \only<2>{\smath{R_1; a + R_2; a}}% |
|
759 \only<3->{\smath{R_1; a\cdot a^\star}}\\ |
|
760 |
|
761 & & & \onslide<4->{by Arden}\\ |
|
762 |
|
763 \onslide<4->{\smath{R_1}} & \onslide<4->{\smath{=}} |
|
764 & \onslide<4->{\smath{R_2; b \cdot b^\star+ \lambda;b^\star}}\\ |
|
765 \onslide<4->{\smath{R_2}} & \onslide<4->{\smath{=}} |
|
766 & \onslide<4->{\smath{R_1; a\cdot a^\star}}\\ |
|
767 |
|
768 & & & \onslide<5->{by substitution}\\ |
|
769 |
|
770 \onslide<5->{\smath{R_1}} & \onslide<5->{\smath{=}} |
|
771 & \onslide<5->{\smath{R_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\ |
|
772 \onslide<5->{\smath{R_2}} & \onslide<5->{\smath{=}} |
|
773 & \onslide<5->{\smath{R_1; a\cdot a^\star}}\\ |
|
774 |
|
775 & & & \onslide<6->{by Arden}\\ |
|
776 |
|
777 \onslide<6->{\smath{R_1}} & \onslide<6->{\smath{=}} |
|
778 & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
779 \onslide<6->{\smath{R_2}} & \onslide<6->{\smath{=}} |
|
780 & \onslide<6->{\smath{R_1; a\cdot a^\star}}\\ |
|
781 |
|
782 & & & \onslide<7->{by substitution}\\ |
|
783 |
|
784 \onslide<7->{\smath{R_1}} & \onslide<7->{\smath{=}} |
|
785 & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
786 \onslide<7->{\smath{R_2}} & \onslide<7->{\smath{=}} |
|
787 & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star |
|
788 \cdot a\cdot a^\star}}\\ |
|
789 \end{tabular} |
|
790 \end{center} |
|
791 |
|
792 \end{frame}} |
|
793 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
794 *} |
|
795 |
|
796 text_raw {* |
|
797 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
798 \mode<presentation>{ |
|
799 \begin{frame}[c] |
|
800 \frametitle{\LARGE A Variant of Arden's Lemma} |
|
801 |
|
802 {\bf Arden's Lemma:}\smallskip |
|
803 |
|
804 If \smath{[] \not\in A} then |
|
805 \begin{center} |
|
806 \smath{X = X; A + \text{something}} |
|
807 \end{center} |
|
808 has the (unique) solution |
|
809 \begin{center} |
|
810 \smath{X = \text{something} ; A^\star} |
|
811 \end{center} |
|
812 |
|
813 |
|
814 \end{frame}} |
|
815 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
816 *} |
|
817 |
|
818 |
|
819 text_raw {* |
|
820 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
821 \mode<presentation>{ |
|
822 \begin{frame}<1->[t] |
|
823 \small |
|
824 |
|
825 \begin{center} |
|
826 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
827 \onslide<1->{\smath{R_1}} & \onslide<1->{\smath{=}} |
|
828 & \onslide<1->{\smath{R_1; b + R_2; b + \lambda;[]}}\\ |
|
829 \onslide<1->{\smath{R_2}} & \onslide<1->{\smath{=}} |
|
830 & \onslide<1->{\smath{R_1; a + R_2; a}}\\ |
|
831 |
|
832 & & & \onslide<2->{by Arden}\\ |
|
833 |
|
834 \onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}} |
|
835 & \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\ |
|
836 \onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}} |
|
837 & \only<2>{\smath{R_1; a + R_2; a}}% |
|
838 \only<3->{\smath{R_1; a\cdot a^\star}}\\ |
|
839 |
|
840 & & & \onslide<4->{by Arden}\\ |
|
841 |
|
842 \onslide<4->{\smath{R_1}} & \onslide<4->{\smath{=}} |
|
843 & \onslide<4->{\smath{R_2; b \cdot b^\star+ \lambda;b^\star}}\\ |
|
844 \onslide<4->{\smath{R_2}} & \onslide<4->{\smath{=}} |
|
845 & \onslide<4->{\smath{R_1; a\cdot a^\star}}\\ |
|
846 |
|
847 & & & \onslide<5->{by substitution}\\ |
|
848 |
|
849 \onslide<5->{\smath{R_1}} & \onslide<5->{\smath{=}} |
|
850 & \onslide<5->{\smath{R_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\ |
|
851 \onslide<5->{\smath{R_2}} & \onslide<5->{\smath{=}} |
|
852 & \onslide<5->{\smath{R_1; a\cdot a^\star}}\\ |
|
853 |
|
854 & & & \onslide<6->{by Arden}\\ |
|
855 |
|
856 \onslide<6->{\smath{R_1}} & \onslide<6->{\smath{=}} |
|
857 & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
858 \onslide<6->{\smath{R_2}} & \onslide<6->{\smath{=}} |
|
859 & \onslide<6->{\smath{R_1; a\cdot a^\star}}\\ |
|
860 |
|
861 & & & \onslide<7->{by substitution}\\ |
|
862 |
|
863 \onslide<7->{\smath{R_1}} & \onslide<7->{\smath{=}} |
|
864 & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
865 \onslide<7->{\smath{R_2}} & \onslide<7->{\smath{=}} |
|
866 & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star |
|
867 \cdot a\cdot a^\star}}\\ |
|
868 \end{tabular} |
|
869 \end{center} |
|
870 |
|
871 \only<8->{ |
|
872 \begin{textblock}{6}(2.5,4) |
|
873 \begin{block}{} |
|
874 \begin{minipage}{8cm}\raggedright |
|
875 |
|
876 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm] |
|
877 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
878 |
|
879 %\draw[help lines] (0,0) grid (3,2); |
|
880 |
|
881 \node[state,initial] (p_0) {$R_1$}; |
|
882 \node[state,accepting] (p_1) [right of=q_0] {$R_2$}; |
|
883 |
|
884 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
885 edge [loop above] node {b} () |
|
886 (p_1) edge [loop above] node {a} () |
|
887 edge [bend left] node {b} (p_0); |
|
888 \end{tikzpicture} |
|
889 |
|
890 \end{minipage} |
|
891 \end{block} |
|
892 \end{textblock}} |
|
893 |
|
894 \end{frame}} |
|
895 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
896 *} |
|
897 |
|
898 |
|
899 text_raw {* |
|
900 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
901 \mode<presentation>{ |
|
902 \begin{frame}[c] |
|
903 \frametitle{\LARGE The Equ's Solving Algorithm} |
|
904 |
|
905 \begin{itemize} |
|
906 \item The algorithm must terminate: Arden makes one equation smaller; |
|
907 substitution deletes one variable from the right-hand sides.\bigskip |
|
908 |
|
909 \item We need to maintain the invariant that Arden is applicable |
|
910 (if \smath{[] \not\in A} then \ldots):\medskip |
|
911 |
|
912 \begin{center}\small |
|
913 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
914 \smath{R_1} & \smath{=} & \smath{R_1; b + R_2; b + \lambda;[]}\\ |
|
915 \smath{R_2} & \smath{=} & \smath{R_1; a + R_2; a}\\ |
|
916 |
|
917 & & & by Arden\\ |
|
918 |
|
919 \smath{R_1} & \smath{=} & \smath{R_1; b + R_2; b + \lambda;[]}\\ |
|
920 \smath{R_2} & \smath{=} & \smath{R_1; a\cdot a^\star}\\ |
|
921 \end{tabular} |
|
922 \end{center} |
|
923 |
|
924 \end{itemize} |
|
925 |
|
926 |
|
927 \end{frame}} |
|
928 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
929 *} |
|
930 |
|
931 |
|
932 |
|
933 text_raw {* |
|
934 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
935 \mode<presentation>{ |
|
936 \begin{frame}[c] |
|
937 \frametitle{\LARGE The Other Direction} |
|
938 |
|
939 One has to prove |
|
940 |
|
941 \begin{center} |
|
942 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})} |
|
943 \end{center} |
|
944 |
|
945 by induction on \smath{r}. This is straightforward for \\the base cases:\small |
|
946 |
|
947 \begin{center} |
|
948 \begin{tabular}{l@ {\hspace{1mm}}l} |
|
949 \smath{U\!N\!IV /\!/ \!\approx_{\emptyset}} & \smath{= \{U\!N\!IV\}}\smallskip\\ |
|
950 \smath{U\!N\!IV /\!/ \!\approx_{\{[]\}}} & \smath{\subseteq \{\{[]\}, U\!N\!IV - \{[]\}\}}\smallskip\\ |
|
951 \smath{U\!N\!IV /\!/ \!\approx_{\{[c]\}}} & \smath{\subseteq \{\{[]\}, \{[c]\}, U\!N\!IV - \{[], [c]\}\}} |
|
952 \end{tabular} |
|
953 \end{center} |
|
954 |
|
955 |
|
956 \end{frame}} |
|
957 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
958 *} |
|
959 |
|
960 |
|
961 text_raw {* |
|
962 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
963 \mode<presentation>{ |
|
964 \begin{frame}[t] |
|
965 \frametitle{\LARGE The Other Direction} |
|
966 |
|
967 More complicated are the inductive cases:\\ one needs to prove that if |
|
968 |
|
969 \begin{center} |
|
970 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1)})}\hspace{3mm} |
|
971 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_2)})} |
|
972 \end{center} |
|
973 |
|
974 then |
|
975 |
|
976 \begin{center} |
|
977 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1) \,\cup\, \mathbb{L}(r_2)})} |
|
978 \end{center} |
|
979 |
|
980 \end{frame}} |
|
981 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
982 *} |
|
983 |
|
984 |
|
985 text_raw {* |
|
986 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
987 \mode<presentation>{ |
|
988 \begin{frame}[t] |
|
989 \frametitle{\LARGE Helper Lemma} |
|
990 |
|
991 \begin{center} |
|
992 \begin{tabular}{p{10cm}} |
|
993 %If \smath{\text{finite} (f\;' A)} and \smath{f} is injective |
|
994 %(on \smath{A}),\\ then \smath{\text{finite}\,A}. |
|
995 Given two equivalence relations \smath{R_1} and \smath{R_2} with |
|
996 \smath{R_1} refining \smath{R_2} (\smath{R_1 \subseteq R_2}).\\ |
|
997 Then\medskip\\ |
|
998 \smath{\;\;\text{finite} (U\!N\!IV /\!/ R_1) \Rightarrow \text{finite} (U\!N\!IV /\!/ R_2)} |
|
999 \end{tabular} |
|
1000 \end{center} |
|
1001 |
|
1002 \end{frame}} |
|
1003 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1004 *} |
|
1005 |
|
1006 text_raw {* |
|
1007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1008 \mode<presentation>{ |
|
1009 \begin{frame}[c] |
|
1010 \frametitle{\Large Derivatives and Left-Quotients} |
|
1011 \small |
|
1012 Work by Brozowski ('64) and Antimirov ('96):\pause\smallskip |
|
1013 |
|
1014 |
|
1015 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}} |
|
1016 \multicolumn{4}{@ {}l}{Left-Quotient:}\\ |
|
1017 \multicolumn{4}{@ {}l}{\bl{$\text{Ders}\;\text{s}\,A \dn \{\text{s'} \;|\; \text{s @ s'} \in A\}$}}\bigskip\\ |
|
1018 |
|
1019 \multicolumn{4}{@ {}l}{Derivative:}\\ |
|
1020 \bl{der c ($\varnothing$)} & \bl{$=$} & \bl{$\varnothing$} & \\ |
|
1021 \bl{der c ([])} & \bl{$=$} & \bl{$\varnothing$} & \\ |
|
1022 \bl{der c (d)} & \bl{$=$} & \bl{if c = d then [] else $\varnothing$} & \\ |
|
1023 \bl{der c (r$_1$ + r$_2$)} & \bl{$=$} & \bl{(der c r$_1$) + (der c r$_2$)} & \\ |
|
1024 \bl{der c (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{((der c r$_1$) $\cdot$ r$_2$)} & \\ |
|
1025 & & \bl{\;\;\;\;+ (if nullable r$_1$ then der c r$_2$ else $\varnothing$)}\\ |
|
1026 \bl{der c (r$^*$)} & \bl{$=$} & \bl{(der c r) $\cdot$ r$^*$} &\smallskip\\ |
|
1027 |
|
1028 \bl{ders [] r} & \bl{$=$} & \bl{r} & \\ |
|
1029 \bl{ders (s @ [c]) r} & \bl{$=$} & \bl{der c (ders s r)} & \\ |
|
1030 \end{tabular}\pause |
|
1031 |
|
1032 \begin{center} |
|
1033 \alert{$\Rightarrow$}\smath{\;\;\text{Ders}\,\text{s}\,(\mathbb{L}(\text{r})) = \mathbb{L} (\text{ders s r})} |
|
1034 \end{center} |
|
1035 |
|
1036 \end{frame}} |
|
1037 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1038 *} |
|
1039 |
|
1040 text_raw {* |
|
1041 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1042 \mode<presentation>{ |
|
1043 \begin{frame}[c] |
|
1044 \frametitle{\LARGE Left-Quotients and MN-Rels} |
|
1045 |
|
1046 \begin{itemize} |
|
1047 \item \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}\medskip |
|
1048 \item \bl{$\text{Ders}\;s\,A \dn \{s' \;|\; s @ s' \in A\}$} |
|
1049 \end{itemize}\bigskip |
|
1050 |
|
1051 \begin{center} |
|
1052 \smath{x \approx_A y \Longleftrightarrow \text{Ders}\;x\;A = \text{Ders}\;y\;A} |
|
1053 \end{center}\bigskip\pause\small |
|
1054 |
|
1055 which means |
|
1056 |
|
1057 \begin{center} |
|
1058 \smath{x \approx_{\mathbb{L}(r)} y \Longleftrightarrow |
|
1059 \mathbb{L}(\text{ders}\;x\;r) = \mathbb{L}(\text{ders}\;y\;r)} |
|
1060 \end{center}\pause |
|
1061 |
|
1062 \hspace{8.8mm}or |
|
1063 \smath{\;x \approx_{\mathbb{L}(r)} y \Longleftarrow |
|
1064 \text{ders}\;x\;r = \text{ders}\;y\;r} |
|
1065 |
|
1066 |
|
1067 |
|
1068 \end{frame}} |
|
1069 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1070 *} |
|
1071 |
|
1072 text_raw {* |
|
1073 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1074 \mode<presentation>{ |
|
1075 \begin{frame}[c] |
|
1076 \frametitle{\LARGE Partial Derivatives} |
|
1077 |
|
1078 Antimirov: \bl{pder : rexp $\Rightarrow$ rexp set}\bigskip |
|
1079 |
|
1080 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}} |
|
1081 \bl{pder c ($\varnothing$)} & \bl{$=$} & \bl{\{$\varnothing$\}} & \\ |
|
1082 \bl{pder c ([])} & \bl{$=$} & \bl{\{$\varnothing$\}} & \\ |
|
1083 \bl{pder c (d)} & \bl{$=$} & \bl{if c = d then \{[]\} else \{$\varnothing$\}} & \\ |
|
1084 \bl{pder c (r$_1$ + r$_2$)} & \bl{$=$} & \bl{(pder c r$_1$) $\cup$ (pder c r$_2$)} & \\ |
|
1085 \bl{pder c (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{(pder c r$_1$) $\odot$ r$_2$} & \\ |
|
1086 & & \bl{\hspace{-10mm}$\cup$ (if nullable r$_1$ then pder c r$_2$ else $\varnothing$)}\\ |
|
1087 \bl{pder c (r$^*$)} & \bl{$=$} & \bl{(pder c r) $\odot$ r$^*$} &\smallskip\\ |
|
1088 \end{tabular} |
|
1089 |
|
1090 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}} |
|
1091 \bl{pders [] r} & \bl{$=$} & \bl{r} & \\ |
|
1092 \bl{pders (s @ [c]) r} & \bl{$=$} & \bl{pder c (pders s r)} & \\ |
|
1093 \end{tabular}\pause |
|
1094 |
|
1095 \begin{center} |
|
1096 \alert{$\Rightarrow$}\smath{\;\;\text{Ders}\,\text{s}\,(\mathbb{L}(\text{r})) = \bigcup (\mathbb{L}\;`\; (\text{pders s r}))} |
|
1097 \end{center} |
|
1098 |
|
1099 \end{frame}} |
|
1100 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1101 *} |
|
1102 |
|
1103 text_raw {* |
|
1104 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1105 \mode<presentation>{ |
|
1106 \begin{frame}[t] |
|
1107 \frametitle{\LARGE Final Result} |
|
1108 |
|
1109 \mbox{}\\[7mm] |
|
1110 |
|
1111 \begin{itemize} |
|
1112 \item \alt<1>{\smath{\text{pders x r \mbox{$=$} pders y r}}} |
|
1113 {\smath{\underbrace{\text{pders x r \mbox{$=$} pders y r}}_{R_1}}} |
|
1114 refines \bl{x $\approx_{\mathbb{L}(\text{r})}$ y}\pause |
|
1115 \item \smath{\text{finite} (U\!N\!IV /\!/ R_1)} \bigskip\pause |
|
1116 \item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})}. Qed. |
|
1117 \end{itemize} |
|
1118 |
|
1119 \end{frame}} |
|
1120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1121 *} |
|
1122 |
|
1123 |
|
1124 text_raw {* |
|
1125 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1126 \mode<presentation>{ |
|
1127 \begin{frame}[c] |
|
1128 \frametitle{\LARGE What Have We Achieved?} |
|
1129 |
|
1130 \begin{itemize} |
|
1131 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_L) \;\Leftrightarrow\; L\; \text{is regular}} |
|
1132 \bigskip\pause |
|
1133 \item regular languages are closed under complementation; this is now easy\medskip |
|
1134 \begin{center} |
|
1135 \smath{U\!N\!IV /\!/ \approx_L \;\;=\;\; U\!N\!IV /\!/ \approx_{-L}} |
|
1136 \end{center} |
|
1137 \end{itemize} |
|
1138 |
|
1139 |
|
1140 \end{frame}} |
|
1141 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1142 *} |
|
1143 |
|
1144 text_raw {* |
|
1145 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1146 \mode<presentation>{ |
|
1147 \begin{frame}[c] |
|
1148 \frametitle{\LARGE Examples} |
|
1149 |
|
1150 \begin{itemize} |
|
1151 \item \smath{L \equiv \Sigma^\star 0 \Sigma} is regular |
|
1152 \begin{quote}\small |
|
1153 \begin{tabular}{lcl} |
|
1154 \smath{A_1} & \smath{=} & \smath{\Sigma^\star 00}\\ |
|
1155 \smath{A_2} & \smath{=} & \smath{\Sigma^\star 01}\\ |
|
1156 \smath{A_3} & \smath{=} & \smath{\Sigma^\star 10 \cup \{0\}}\\ |
|
1157 \smath{A_4} & \smath{=} & \smath{\Sigma^\star 11 \cup \{1\} \cup \{[]\}}\\ |
|
1158 \end{tabular} |
|
1159 \end{quote} |
|
1160 |
|
1161 \item \smath{L \equiv \{ 0^n 1^n \,|\, n \ge 0\}} is not regular |
|
1162 \begin{quote}\small |
|
1163 \begin{tabular}{lcl} |
|
1164 \smath{B_0} & \smath{=} & \smath{\{0^n 1^n \,|\, n \ge 0\}}\\ |
|
1165 \smath{B_1} & \smath{=} & \smath{\{0^n 1^{(n-1)} \,|\, n \ge 1\}}\\ |
|
1166 \smath{B_2} & \smath{=} & \smath{\{0^n 1^{(n-2)} \,|\, n \ge 2\}}\\ |
|
1167 \smath{B_3} & \smath{=} & \smath{\{0^n 1^{(n-3)} \,|\, n \ge 3\}}\\ |
|
1168 & \smath{\vdots} &\\ |
|
1169 \end{tabular} |
|
1170 \end{quote} |
|
1171 \end{itemize} |
|
1172 |
|
1173 \end{frame}} |
|
1174 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1175 *} |
|
1176 |
|
1177 |
|
1178 text_raw {* |
|
1179 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1180 \mode<presentation>{ |
|
1181 \begin{frame}[c] |
|
1182 \frametitle{\LARGE What We Have Not Achieved} |
|
1183 |
|
1184 \begin{itemize} |
|
1185 \item regular expressions are not good if you look for a minimal |
|
1186 one for a language (DFAs have this notion)\pause\bigskip |
|
1187 |
|
1188 \item Is there anything to be said about context free languages:\medskip |
|
1189 |
|
1190 \begin{quote} |
|
1191 A context free language is where every string can be recognised by |
|
1192 a pushdown automaton.\bigskip |
|
1193 \end{quote} |
|
1194 \end{itemize} |
|
1195 |
|
1196 \textcolor{gray}{\footnotesize Yes. Derivatives also work for c-f grammars. Ongoing work.} |
|
1197 |
|
1198 \end{frame}} |
|
1199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1200 *} |
|
1201 |
|
1202 |
|
1203 text_raw {* |
|
1204 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1205 \mode<presentation>{ |
|
1206 \begin{frame}[c] |
|
1207 \frametitle{\LARGE Conclusion} |
|
1208 |
|
1209 \begin{itemize} |
|
1210 \item We formalised the Myhill-Nerode theorem based on |
|
1211 regular expressions only (DFAs are difficult to deal with in a theorem prover).\smallskip |
|
1212 |
|
1213 \item Seems to be a common theme: algorithms need to be reformulated |
|
1214 to better suit formal treatment.\smallskip |
|
1215 |
|
1216 \item The most interesting aspect is that we are able to |
|
1217 implement the matcher directly inside the theorem prover |
|
1218 (ongoing work).\smallskip |
|
1219 |
|
1220 \item Parsing is a vast field which seem to offer new results. |
|
1221 \end{itemize} |
|
1222 |
|
1223 \end{frame}} |
|
1224 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1225 *} |
|
1226 |
|
1227 text_raw {* |
|
1228 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1229 \mode<presentation>{ |
|
1230 \begin{frame}<1>[b] |
|
1231 \frametitle{ |
|
1232 \begin{tabular}{c} |
|
1233 \mbox{}\\[13mm] |
|
1234 \alert{\LARGE Thank you very much!}\\ |
|
1235 \alert{\Large Questions?} |
|
1236 \end{tabular}} |
|
1237 |
|
1238 \end{frame}} |
|
1239 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1240 *} |
|
1241 |
|
1242 |
|
1243 |
|
1244 (*<*) |
|
1245 end |
|
1246 (*>*) |
|