1 (*<*) |
|
2 theory Slides6 |
|
3 imports "~~/src/HOL/Library/LaTeXsugar" "Nominal" |
|
4 begin |
|
5 |
|
6 declare [[show_question_marks = false]] |
|
7 |
|
8 notation (latex output) |
|
9 set ("_") and |
|
10 Cons ("_::/_" [66,65] 65) |
|
11 |
|
12 (*>*) |
|
13 |
|
14 text_raw {* |
|
15 \renewcommand{\slidecaption}{Hefei, 15.~April 2011} |
|
16 |
|
17 \newcommand{\abst}[2]{#1.#2}% atom-abstraction |
|
18 \newcommand{\pair}[2]{\langle #1,#2\rangle} % pairing |
|
19 \newcommand{\susp}{{\boldsymbol{\cdot}}}% for suspensions |
|
20 \newcommand{\unit}{\langle\rangle}% unit |
|
21 \newcommand{\app}[2]{#1\,#2}% application |
|
22 \newcommand{\eqprob}{\mathrel{{\approx}?}} |
|
23 \newcommand{\freshprob}{\mathrel{\#?}} |
|
24 \newcommand{\redu}[1]{\stackrel{#1}{\Longrightarrow}}% reduction |
|
25 \newcommand{\id}{\varepsilon}% identity substitution |
|
26 |
|
27 \newcommand{\bl}[1]{\textcolor{blue}{#1}} |
|
28 \newcommand{\gr}[1]{\textcolor{gray}{#1}} |
|
29 \newcommand{\rd}[1]{\textcolor{red}{#1}} |
|
30 |
|
31 \newcommand{\ok}{\includegraphics[scale=0.07]{ok.png}} |
|
32 \newcommand{\notok}{\includegraphics[scale=0.07]{notok.png}} |
|
33 \newcommand{\largenotok}{\includegraphics[scale=1]{notok.png}} |
|
34 |
|
35 \renewcommand{\Huge}{\fontsize{61.92}{77}\selectfont} |
|
36 \newcommand{\veryHuge}{\fontsize{74.3}{93}\selectfont} |
|
37 \newcommand{\VeryHuge}{\fontsize{89.16}{112}\selectfont} |
|
38 \newcommand{\VERYHuge}{\fontsize{107}{134}\selectfont} |
|
39 |
|
40 \newcommand{\LL}{$\mathbb{L}\,$} |
|
41 |
|
42 |
|
43 \pgfdeclareradialshading{smallbluesphere}{\pgfpoint{0.5mm}{0.5mm}}% |
|
44 {rgb(0mm)=(0,0,0.9); |
|
45 rgb(0.9mm)=(0,0,0.7); |
|
46 rgb(1.3mm)=(0,0,0.5); |
|
47 rgb(1.4mm)=(1,1,1)} |
|
48 |
|
49 \def\myitemi{\begin{pgfpicture}{-1ex}{-0.55ex}{1ex}{1ex} |
|
50 \usebeamercolor[fg]{subitem projected} |
|
51 {\pgftransformscale{0.8}\pgftext{\normalsize\pgfuseshading{bigsphere}}} |
|
52 \pgftext{% |
|
53 \usebeamerfont*{subitem projected}} |
|
54 \end{pgfpicture}} |
|
55 |
|
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
57 \mode<presentation>{ |
|
58 \begin{frame}<1>[t] |
|
59 \frametitle{% |
|
60 \begin{tabular}{@ {\hspace{-3mm}}c@ {}} |
|
61 \\ |
|
62 \LARGE Verifying a Regular Expression\\[-1mm] |
|
63 \LARGE Matcher and Formal Language\\[-1mm] |
|
64 \LARGE Theory\\[5mm] |
|
65 \end{tabular}} |
|
66 \begin{center} |
|
67 Christian Urban\\ |
|
68 \small Technical University of Munich, Germany |
|
69 \end{center} |
|
70 |
|
71 |
|
72 \begin{center} |
|
73 \small joint work with Chunhan Wu and Xingyuan Zhang from the PLA |
|
74 University of Science and Technology in Nanjing |
|
75 \end{center} |
|
76 \end{frame}} |
|
77 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
78 |
|
79 *} |
|
80 |
|
81 |
|
82 text_raw {* |
|
83 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
84 \mode<presentation>{ |
|
85 \begin{frame}<1->[c] |
|
86 \frametitle{My Background} |
|
87 |
|
88 \mbox{}\\[-10mm] |
|
89 \begin{itemize} |
|
90 \item My background is in theory and programming languages.\bigskip |
|
91 \pause |
|
92 |
|
93 \item But I am also a programmer with a \alert<2>{software system} of around 800 kloc |
|
94 (though I am responsible for only appr.~35 kloc), |
|
95 |
|
96 \item and I write papers. |
|
97 \end{itemize} |
|
98 |
|
99 \only<2>{ |
|
100 \begin{textblock}{6}(6.5,11.5) |
|
101 \begin{tikzpicture} |
|
102 \draw (0,0) node[inner sep=2mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
103 {\color{darkgray} |
|
104 \begin{minipage}{6.5cm}\raggedright |
|
105 \begin{tabular}[b]{@ {}p{4.5cm}c@ {}} |
|
106 \raggedright |
|
107 The software is a theorem prover, called {\bf Isabelle}. |
|
108 & \mbox{}\hspace{-5mm}\raisebox{-14mm}{\includegraphics[scale=0.28]{isabelle1.png}} |
|
109 \end{tabular}% |
|
110 \end{minipage}}; |
|
111 \end{tikzpicture} |
|
112 \end{textblock}} |
|
113 |
|
114 \only<4>{ |
|
115 \begin{textblock}{6}(3,11.5) |
|
116 \begin{tikzpicture} |
|
117 \draw (0,0) node[inner sep=2mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
118 {\color{darkgray} |
|
119 \begin{minipage}{9.6cm}\raggedright |
|
120 So I can experience every day that writing error-free code is {\bf very, very hard} |
|
121 and that papers are also {\bf hard} to get correct. |
|
122 \end{minipage}}; |
|
123 \end{tikzpicture} |
|
124 \end{textblock}} |
|
125 |
|
126 \end{frame}} |
|
127 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
128 *} |
|
129 |
|
130 |
|
131 text_raw {* |
|
132 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
133 \mode<presentation>{ |
|
134 \begin{frame}[c] |
|
135 \frametitle{3 Points} |
|
136 \large |
|
137 \begin{itemize} |
|
138 \item It is easy to make mistakes.\bigskip |
|
139 \item Theorem provers can prevent mistakes, {\bf if} the problem |
|
140 is formulated so that it is suitable for theorem provers.\bigskip |
|
141 \item This re-formulation can be done, even in domains where |
|
142 we do not expect it. |
|
143 \end{itemize} |
|
144 |
|
145 \end{frame}} |
|
146 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
147 *} |
|
148 |
|
149 text_raw {* |
|
150 |
|
151 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
152 \mode<presentation>{ |
|
153 \begin{frame} |
|
154 \frametitle{Getting Papers Correct} |
|
155 |
|
156 \begin{minipage}{1.1\textwidth} |
|
157 My work over the last 5 years.\\ |
|
158 {\small (in the fields of programming languages, logic and lambda-calculi)} |
|
159 \end{minipage}\bigskip |
|
160 |
|
161 \only<1>{ |
|
162 \mbox{}\\[15mm] |
|
163 \begin{center} |
|
164 \begin{tikzpicture}[node distance=0.5mm] |
|
165 \node at (-1.0,-0.3) (proof) [double arrow, fill=gray,text=white, minimum height=2cm]{\bf Proof}; |
|
166 \node [left=of proof]{\Large\bf Specification}; |
|
167 \node [right=of proof]{\Large\bf Code}; |
|
168 \end{tikzpicture} |
|
169 \end{center} |
|
170 } |
|
171 \pause |
|
172 |
|
173 \begin{tabular}{c@ {\hspace{2mm}}c} |
|
174 \begin{tabular}{c} |
|
175 \includegraphics[scale=0.09]{harper.jpg}\\[-2mm] |
|
176 {\footnotesize Bob Harper}\\[-2.5mm] |
|
177 {\footnotesize (CMU)} |
|
178 \end{tabular} |
|
179 \begin{tabular}{c} |
|
180 \includegraphics[scale=0.31]{pfenning.jpg}\\[-2mm] |
|
181 {\footnotesize Frank Pfenning}\\[-2.5mm] |
|
182 {\footnotesize (CMU)} |
|
183 \end{tabular} & |
|
184 |
|
185 \begin{tabular}{p{6cm}} |
|
186 \raggedright\small |
|
187 \color{gray}{published a proof in ACM Transactions on Computational Logic (2005), |
|
188 $\sim$31pp} |
|
189 \end{tabular}\\ |
|
190 |
|
191 \\[-4mm] |
|
192 |
|
193 \begin{tabular}{c} |
|
194 \includegraphics[scale=0.3]{appel.jpg}\\[-2mm] |
|
195 {\footnotesize Andrew Appel}\\[-2.5mm] |
|
196 {\footnotesize (Princeton)} |
|
197 \end{tabular} & |
|
198 |
|
199 \begin{tabular}{p{6cm}} |
|
200 \raggedright\small |
|
201 \color{gray}{relied on their proof in a safety critical system (proof carrying code)} |
|
202 \end{tabular} |
|
203 |
|
204 \end{tabular}\medskip |
|
205 |
|
206 \end{frame}} |
|
207 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
208 |
|
209 *} |
|
210 |
|
211 |
|
212 text_raw {* |
|
213 |
|
214 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
215 \mode<presentation>{ |
|
216 \begin{frame} |
|
217 \frametitle{Proof-Carrying Code} |
|
218 |
|
219 \begin{textblock}{10}(2.5,2.2) |
|
220 \begin{block}{Idea:} |
|
221 \begin{center} |
|
222 \begin{tikzpicture} |
|
223 \draw[help lines,cream] (0,0.2) grid (8,4); |
|
224 |
|
225 \draw[line width=1mm, red] (5.5,0.6) rectangle (7.5,4); |
|
226 \node[anchor=base] at (6.5,2.8) |
|
227 {\small\begin{tabular}{@ {}p{1.9cm}@ {}}\centering user needs to run untrusted code\end{tabular}}; |
|
228 |
|
229 \draw[line width=1mm, red] (0.5,0.6) rectangle (2.5,4); |
|
230 \node[anchor=base] at (1.5,2.3) |
|
231 {\small\begin{tabular}{@ {}p{1.9cm}@ {}}\centering code developer/ web server/ Apple |
|
232 Store\end{tabular}}; |
|
233 |
|
234 \onslide<4->{ |
|
235 \draw[line width=1mm, red, fill=red] (5.5,0.6) rectangle (7.5,1.8); |
|
236 \node[anchor=base,white] at (6.5,1.1) |
|
237 {\small\begin{tabular}{@ {}p{1.9cm}@ {}}\bf\centering proof- checker\end{tabular}};} |
|
238 |
|
239 \node at (3.8,3.0) [single arrow, fill=red,text=white, minimum height=3cm]{\bf code}; |
|
240 \onslide<3->{ |
|
241 \node at (3.8,1.3) [single arrow, fill=red,text=white, minimum height=3cm]{\bf LF proof}; |
|
242 \node at (3.8,1.9) {\small certificate}; |
|
243 } |
|
244 |
|
245 \onslide<2>{\node at (4.0,1.3) [text=red]{\begin{tabular}{c}\bf Highly\\\bf Dangerous!\end{tabular}};} |
|
246 |
|
247 \end{tikzpicture} |
|
248 \end{center} |
|
249 \end{block} |
|
250 \end{textblock} |
|
251 |
|
252 \begin{textblock}{15}(2,12) |
|
253 \small |
|
254 \begin{itemize} |
|
255 \item<4-> Appel's checker is $\sim$2700 lines of code (1865 loc of\\ LF definitions; |
|
256 803 loc in C including 2 library functions)\\[-3mm] |
|
257 \item<5-> 167 loc in C implement a type-checker |
|
258 \end{itemize} |
|
259 \end{textblock} |
|
260 |
|
261 \end{frame}} |
|
262 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
263 |
|
264 *} |
|
265 |
|
266 text {* |
|
267 \tikzstyle{every node}=[node distance=25mm,text height=1.5ex, text depth=.25ex] |
|
268 \tikzstyle{node1}=[rectangle, minimum size=10mm, rounded corners=3mm, very thick, |
|
269 draw=black!50, top color=white, bottom color=black!20] |
|
270 \tikzstyle{node2}=[rectangle, minimum size=12mm, rounded corners=3mm, very thick, |
|
271 draw=red!70, top color=white, bottom color=red!50!black!20] |
|
272 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
273 \mode<presentation>{ |
|
274 \begin{frame}<2->[squeeze] |
|
275 \frametitle{Type-Checking in LF} |
|
276 |
|
277 \begin{columns} |
|
278 |
|
279 \begin{column}{0.8\textwidth} |
|
280 \begin{textblock}{0}(1,2) |
|
281 |
|
282 \begin{tikzpicture} |
|
283 \matrix[ampersand replacement=\&,column sep=7mm, row sep=5mm] |
|
284 { \&[-10mm] |
|
285 \node (def1) [node1] {\large\hspace{1mm}Spec\hspace{1mm}\mbox{}}; \& |
|
286 \node (proof1) [node1] {\large Proof}; \& |
|
287 \node (alg1) [node1] {\large\hspace{1mm}Alg\hspace{1mm}\mbox{}}; \\ |
|
288 |
|
289 \onslide<4->{\node {\begin{tabular}{c}\small 1st\\[-2.5mm] \footnotesize solution\end{tabular}};} \& |
|
290 \onslide<4->{\node (def2) [node2] {\large Spec$^\text{+ex}$};} \& |
|
291 \onslide<4->{\node (proof2) [node1] {\large Proof};} \& |
|
292 \onslide<4->{\node (alg2) [node1] {\large\hspace{1mm}Alg\hspace{1mm}\mbox{}};} \\ |
|
293 |
|
294 \onslide<5->{\node {\begin{tabular}{c}\small 2nd\\[-2.5mm] \footnotesize solution\end{tabular}};} \& |
|
295 \onslide<5->{\node (def3) [node1] {\large\hspace{1mm}Spec\hspace{1mm}\mbox{}};} \& |
|
296 \onslide<5->{\node (proof3) [node1] {\large Proof};} \& |
|
297 \onslide<5->{\node (alg3) [node2] {\large Alg$^\text{-ex}$};} \\ |
|
298 |
|
299 \onslide<6->{\node {\begin{tabular}{c}\small 3rd\\[-2.5mm] \footnotesize solution\end{tabular}};} \& |
|
300 \onslide<6->{\node (def4) [node1] {\large\hspace{1mm}Spec\hspace{1mm}\mbox{}};} \& |
|
301 \onslide<6->{\node (proof4) [node2] {\large\hspace{1mm}Proof\hspace{1mm}};} \& |
|
302 \onslide<6->{\node (alg4) [node1] {\large\hspace{1mm}Alg\hspace{1mm}\mbox{}};} \\ |
|
303 }; |
|
304 |
|
305 \draw[->,black!50,line width=2mm] (proof1) -- (def1); |
|
306 \draw[->,black!50,line width=2mm] (proof1) -- (alg1); |
|
307 |
|
308 \onslide<4->{\draw[->,black!50,line width=2mm] (proof2) -- (def2);} |
|
309 \onslide<4->{\draw[->,black!50,line width=2mm] (proof2) -- (alg2);} |
|
310 |
|
311 \onslide<5->{\draw[->,black!50,line width=2mm] (proof3) -- (def3);} |
|
312 \onslide<5->{\draw[->,black!50,line width=2mm] (proof3) -- (alg3);} |
|
313 |
|
314 \onslide<6->{\draw[->,black!50,line width=2mm] (proof4) -- (def4);} |
|
315 \onslide<6->{\draw[->,black!50,line width=2mm] (proof4) -- (alg4);} |
|
316 |
|
317 \onslide<3->{\draw[white,line width=1mm] (1.1,3.2) -- (0.9,2.85) -- (1.1,2.35) -- (0.9,2.0);} |
|
318 \end{tikzpicture} |
|
319 |
|
320 \end{textblock} |
|
321 \end{column} |
|
322 \end{columns} |
|
323 |
|
324 |
|
325 \begin{textblock}{3}(12,3.6) |
|
326 \onslide<4->{ |
|
327 \begin{tikzpicture} |
|
328 \node at (0,0) [single arrow, shape border rotate=270, fill=red,text=white]{2h}; |
|
329 \end{tikzpicture}} |
|
330 \end{textblock} |
|
331 |
|
332 \only<7->{ |
|
333 \begin{textblock}{14}(0.6,12.8) |
|
334 \begin{block}{} |
|
335 \small Each time one needs to check $\sim$31pp~of informal paper proofs. |
|
336 You have to be able to keep definitions and proofs consistent. |
|
337 \end{block} |
|
338 \end{textblock}} |
|
339 |
|
340 \end{frame}} |
|
341 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
342 |
|
343 *} |
|
344 |
|
345 |
|
346 text_raw {* |
|
347 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
348 \mode<presentation>{ |
|
349 \begin{frame}<1->[c] |
|
350 \frametitle{Lessons Learned} |
|
351 |
|
352 \begin{itemize} |
|
353 \item Theorem provers help with keeping large proofs consistent; |
|
354 make them modifiable.\medskip |
|
355 |
|
356 \item They can ensure that all cases are covered.\medskip |
|
357 |
|
358 \item Some reasoning can be automated. |
|
359 \end{itemize}\bigskip\pause |
|
360 |
|
361 \begin{minipage}{1.1\textwidth} |
|
362 Formal reasoning needs to be ``smooth''.\\ |
|
363 {\small (ideally as close as possible to reasoning with ``pen-and-paper'')} |
|
364 \end{minipage} |
|
365 |
|
366 \only<2->{ |
|
367 \begin{textblock}{3}(0.1,9.9) |
|
368 \begin{tikzpicture} |
|
369 \node at (0,0) [single arrow, shape border rotate=0, fill=red,text=red]{a}; |
|
370 \end{tikzpicture} |
|
371 \end{textblock}} |
|
372 |
|
373 |
|
374 \end{frame}} |
|
375 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
376 *} |
|
377 |
|
378 |
|
379 (*<*) |
|
380 atom_decl name |
|
381 |
|
382 nominal_datatype lam = |
|
383 Var "name" |
|
384 | App "lam" "lam" |
|
385 | Lam "\<guillemotleft>name\<guillemotright>lam" ("Lam [_]._" [100,100] 100) |
|
386 |
|
387 nominal_primrec |
|
388 subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" ("_[_::=_]") |
|
389 where |
|
390 "(Var x)[y::=s] = (if x=y then s else (Var x))" |
|
391 | "(App t\<^isub>1 t\<^isub>2)[y::=s] = App (t\<^isub>1[y::=s]) (t\<^isub>2[y::=s])" |
|
392 | "x\<sharp>(y,s) \<Longrightarrow> (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])" |
|
393 apply(finite_guess)+ |
|
394 apply(rule TrueI)+ |
|
395 apply(simp add: abs_fresh) |
|
396 apply(fresh_guess)+ |
|
397 done |
|
398 |
|
399 lemma subst_eqvt[eqvt]: |
|
400 fixes pi::"name prm" |
|
401 shows "pi\<bullet>(t1[x::=t2]) = (pi\<bullet>t1)[(pi\<bullet>x)::=(pi\<bullet>t2)]" |
|
402 by (nominal_induct t1 avoiding: x t2 rule: lam.strong_induct) |
|
403 (auto simp add: perm_bij fresh_atm fresh_bij) |
|
404 |
|
405 lemma fresh_fact: |
|
406 fixes z::"name" |
|
407 shows "\<lbrakk>z\<sharp>s; (z=y \<or> z\<sharp>t)\<rbrakk> \<Longrightarrow> z\<sharp>t[y::=s]" |
|
408 by (nominal_induct t avoiding: z y s rule: lam.strong_induct) |
|
409 (auto simp add: abs_fresh fresh_prod fresh_atm) |
|
410 |
|
411 lemma forget: |
|
412 assumes asm: "x\<sharp>L" |
|
413 shows "L[x::=P] = L" |
|
414 using asm |
|
415 by (nominal_induct L avoiding: x P rule: lam.strong_induct) |
|
416 (auto simp add: abs_fresh fresh_atm) |
|
417 (*>*) |
|
418 |
|
419 text_raw {* |
|
420 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
421 \mode<presentation>{ |
|
422 \begin{frame} |
|
423 |
|
424 \begin{textblock}{16}(1,1) |
|
425 \renewcommand{\isasymbullet}{$\cdot$} |
|
426 \tiny\color{black} |
|
427 *} |
|
428 lemma substitution_lemma_not_to_be_tried_at_home: |
|
429 assumes asm: "x\<noteq>y" "x\<sharp>L" |
|
430 shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]" |
|
431 using asm |
|
432 proof (induct M arbitrary: x y N L rule: lam.induct) |
|
433 case (Lam z M1) |
|
434 have ih: "\<And>x y N L. \<lbrakk>x\<noteq>y; x\<sharp>L\<rbrakk> \<Longrightarrow> M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact |
|
435 have "x\<noteq>y" by fact |
|
436 have "x\<sharp>L" by fact |
|
437 obtain z'::"name" where fc: "z'\<sharp>(x,y,z,M1,N,L)" by (rule exists_fresh) (auto simp add: fs_name1) |
|
438 have eq: "Lam [z'].([(z',z)]\<bullet>M1) = Lam [z].M1" using fc |
|
439 by (auto simp add: lam.inject alpha fresh_prod fresh_atm) |
|
440 have fc': "z'\<sharp>N[y::=L]" using fc by (simp add: fresh_fact fresh_prod) |
|
441 have "([(z',z)]\<bullet>x) \<noteq> ([(z',z)]\<bullet>y)" using `x\<noteq>y` by (auto simp add: calc_atm) |
|
442 moreover |
|
443 have "([(z',z)]\<bullet>x)\<sharp>([(z',z)]\<bullet>L)" using `x\<sharp>L` by (simp add: fresh_bij) |
|
444 ultimately |
|
445 have "M1[([(z',z)]\<bullet>x)::=([(z',z)]\<bullet>N)][([(z',z)]\<bullet>y)::=([(z',z)]\<bullet>L)] |
|
446 = M1[([(z',z)]\<bullet>y)::=([(z',z)]\<bullet>L)][([(z',z)]\<bullet>x)::=([(z',z)]\<bullet>N)[([(z',z)]\<bullet>y)::=([(z',z)]\<bullet>L)]]" |
|
447 using ih by simp |
|
448 then have "[(z',z)]\<bullet>(M1[([(z',z)]\<bullet>x)::=([(z',z)]\<bullet>N)][([(z',z)]\<bullet>y)::=([(z',z)]\<bullet>L)] |
|
449 = M1[([(z',z)]\<bullet>y)::=([(z',z)]\<bullet>L)][([(z',z)]\<bullet>x)::=([(z',z)]\<bullet>N)[([(z',z)]\<bullet>y)::=([(z',z)]\<bullet>L)]])" |
|
450 by (simp add: perm_bool) |
|
451 then have ih': "([(z',z)]\<bullet>M1)[x::=N][y::=L] = ([(z',z)]\<bullet>M1)[y::=L][x::=N[y::=L]]" |
|
452 by (simp add: eqvts perm_swap) |
|
453 show "(Lam [z].M1)[x::=N][y::=L] = (Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS") |
|
454 proof - |
|
455 have "?LHS = (Lam [z'].([(z',z)]\<bullet>M1))[x::=N][y::=L]" using eq by simp |
|
456 also have "\<dots> = Lam [z'].(([(z',z)]\<bullet>M1)[x::=N][y::=L])" using fc by (simp add: fresh_prod) |
|
457 also from ih have "\<dots> = Lam [z'].(([(z',z)]\<bullet>M1)[y::=L][x::=N[y::=L]])" sorry |
|
458 also have "\<dots> = (Lam [z'].([(z',z)]\<bullet>M1))[y::=L][x::=N[y::=L]]" using fc fc' by (simp add: fresh_prod) |
|
459 also have "\<dots> = ?RHS" using eq by simp |
|
460 finally show "?LHS = ?RHS" . |
|
461 qed |
|
462 qed (auto simp add: forget) |
|
463 text_raw {* |
|
464 \end{textblock} |
|
465 \mbox{} |
|
466 |
|
467 \only<2->{ |
|
468 \begin{textblock}{11.5}(4,2.3) |
|
469 \begin{minipage}{9.3cm} |
|
470 \begin{block}{}\footnotesize |
|
471 *} |
|
472 lemma substitution_lemma\<iota>: |
|
473 assumes asm: "x \<noteq> y" "x \<sharp> L" |
|
474 shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]" |
|
475 using asm |
|
476 by (nominal_induct M avoiding: x y N L rule: lam.strong_induct) |
|
477 (auto simp add: forget fresh_fact) |
|
478 text_raw {* |
|
479 \end{block} |
|
480 \end{minipage} |
|
481 \end{textblock}} |
|
482 \end{frame}} |
|
483 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
484 *} |
|
485 |
|
486 text_raw {* |
|
487 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
488 \mode<presentation>{ |
|
489 \begin{frame}<1>[c] |
|
490 \frametitle{Getting Programs Correct} |
|
491 |
|
492 \begin{center} |
|
493 \begin{tikzpicture}[node distance=0.5mm] |
|
494 \node at (-1.0,-0.3) (proof) [double arrow, fill=gray,text=white, minimum height=2cm]{\bf Proof}; |
|
495 \node [left=of proof]{\Large\bf Specification}; |
|
496 \node [right=of proof]{\Large\bf Code}; |
|
497 \end{tikzpicture} |
|
498 \end{center} |
|
499 |
|
500 |
|
501 |
|
502 \end{frame}} |
|
503 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
504 *} |
|
505 |
|
506 text_raw {* |
|
507 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
508 \mode<presentation>{ |
|
509 \begin{frame}<1->[t] |
|
510 \frametitle{Regular Expressions} |
|
511 |
|
512 \begin{textblock}{6}(2,4) |
|
513 \begin{tabular}{@ {}rrl} |
|
514 \bl{r} & \bl{$::=$} & \bl{$\varnothing$}\\ |
|
515 & \bl{$\mid$} & \bl{[]}\\ |
|
516 & \bl{$\mid$} & \bl{c}\\ |
|
517 & \bl{$\mid$} & \bl{r$_1$ + r$_2$}\\ |
|
518 & \bl{$\mid$} & \bl{r$_1$ $\cdot$ r$_2$}\\ |
|
519 & \bl{$\mid$} & \bl{r$^*$}\\ |
|
520 \end{tabular} |
|
521 \end{textblock} |
|
522 |
|
523 \begin{textblock}{6}(8,3.5) |
|
524 \includegraphics[scale=0.35]{Screen1.png} |
|
525 \end{textblock} |
|
526 |
|
527 \begin{textblock}{6}(10.2,2.8) |
|
528 \footnotesize Isabelle: |
|
529 \end{textblock} |
|
530 |
|
531 \only<2>{ |
|
532 \begin{textblock}{9}(3.6,11.8) |
|
533 \bl{matches r s $\;\Longrightarrow\;$ true $\vee$ false}\\[3.5mm] |
|
534 |
|
535 \hspace{10mm}\begin{tikzpicture} |
|
536 \coordinate (m1) at (0.4,1); |
|
537 \draw (0,0.3) node (m2) {\small\color{gray}rexp}; |
|
538 \path[overlay, ->, line width = 0.5mm, shorten <=-1mm, draw = gray] (m2) edge (m1); |
|
539 |
|
540 \coordinate (s1) at (0.81,1); |
|
541 \draw (1.3,0.3) node (s2) {\small\color{gray} string}; |
|
542 \path[overlay, ->, line width = 0.5mm, shorten <=-1mm, draw = gray] (s2) edge (s1); |
|
543 \end{tikzpicture} |
|
544 \end{textblock}} |
|
545 |
|
546 |
|
547 |
|
548 \end{frame}} |
|
549 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
550 *} |
|
551 |
|
552 text_raw {* |
|
553 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
554 \mode<presentation>{ |
|
555 \begin{frame}<1->[t] |
|
556 \frametitle{Specification} |
|
557 |
|
558 \small |
|
559 \begin{textblock}{6}(0,3.5) |
|
560 \begin{tabular}{r@ {\hspace{0.5mm}}r@ {\hspace{1.5mm}}c@ {\hspace{1.5mm}}l} |
|
561 \multicolumn{4}{c}{rexp $\Rightarrow$ set of strings}\bigskip\\ |
|
562 &\bl{\LL ($\varnothing$)} & \bl{$\dn$} & \bl{$\varnothing$}\\ |
|
563 &\bl{\LL ([])} & \bl{$\dn$} & \bl{\{[]\}}\\ |
|
564 &\bl{\LL (c)} & \bl{$\dn$} & \bl{\{c\}}\\ |
|
565 &\bl{\LL (r$_1$ + r$_2$)} & \bl{$\dn$} & \bl{\LL (r$_1$) $\cup$ \LL (r$_2$)}\\ |
|
566 \rd{$\Rightarrow$} &\bl{\LL (r$_1$ $\cdot$ r$_2$)} & \bl{$\dn$} & \bl{\LL (r$_1$) ;; \LL (r$_2$)}\\ |
|
567 \rd{$\Rightarrow$} &\bl{\LL (r$^*$)} & \bl{$\dn$} & \bl{(\LL (r))$^\star$}\\ |
|
568 \end{tabular} |
|
569 \end{textblock} |
|
570 |
|
571 \begin{textblock}{9}(7.3,3) |
|
572 {\mbox{}\hspace{2cm}\footnotesize Isabelle:\smallskip} |
|
573 \includegraphics[scale=0.325]{Screen3.png} |
|
574 \end{textblock} |
|
575 |
|
576 \end{frame}} |
|
577 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
578 *} |
|
579 |
|
580 |
|
581 text_raw {* |
|
582 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
583 \mode<presentation>{ |
|
584 \begin{frame}<1->[t] |
|
585 \frametitle{Version 1} |
|
586 \small |
|
587 \mbox{}\\[-8mm]\mbox{} |
|
588 |
|
589 \begin{center}\def\arraystretch{1.05} |
|
590 \begin{tabular}{@ {\hspace{-5mm}}l@ {\hspace{2.5mm}}c@ {\hspace{2.5mm}}l@ {}} |
|
591 \bl{match [] []} & \bl{$=$} & \bl{true}\\ |
|
592 \bl{match [] (c::s)} & \bl{$=$} & \bl{false}\\ |
|
593 \bl{match ($\varnothing$::rs) s} & \bl{$=$} & \bl{false}\\ |
|
594 \bl{match ([]::rs) s} & \bl{$=$} & \bl{match rs s}\\ |
|
595 \bl{match (c::rs) []} & \bl{$=$} & \bl{false}\\ |
|
596 \bl{match (c::rs) (d::s)} & \bl{$=$} & \bl{if c = d then match rs s else false}\\ |
|
597 \bl{match (r$_1$ + r$_2$::rs) s} & \bl{$=$} & \bl{match (r$_1$::rs) s $\vee$ match (r$_2$::rs) s}\\ |
|
598 \bl{match (r$_1$ $\cdot$ r$_2$::rs) s} & \bl{$=$} & \bl{match (r$_1$::r$_2$::rs) s}\\ |
|
599 \bl{match (r$^*$::rs) s} & \bl{$=$} & \bl{match rs s $\vee$ match (r::r$^*$::rs) s}\\ |
|
600 \end{tabular} |
|
601 \end{center} |
|
602 |
|
603 \begin{textblock}{9}(0.2,1.6) |
|
604 \hspace{10mm}\begin{tikzpicture} |
|
605 \coordinate (m1) at (0.44,-0.5); |
|
606 \draw (0,0.3) node (m2) {\small\color{gray}\mbox{}\hspace{-9mm}list of rexps}; |
|
607 \path[overlay, ->, line width = 0.5mm, shorten <=-1mm, draw = gray] (m2) edge (m1); |
|
608 |
|
609 \coordinate (s1) at (0.86,-0.5); |
|
610 \draw (1.5,0.3) node (s2) {\small\color{gray} string}; |
|
611 \path[overlay, ->, line width = 0.5mm, shorten <=-1mm, draw = gray] (s2) edge (s1); |
|
612 \end{tikzpicture} |
|
613 \end{textblock} |
|
614 |
|
615 \begin{textblock}{9}(2.8,11.8) |
|
616 \bl{matches$_1$ r s $\;=\;$ match [r] s} |
|
617 \end{textblock} |
|
618 |
|
619 \end{frame}} |
|
620 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
621 *} |
|
622 |
|
623 text_raw {* |
|
624 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
625 \mode<presentation>{ |
|
626 \begin{frame}<1->[c] |
|
627 \frametitle{Testing} |
|
628 |
|
629 \small |
|
630 Every good programmer should do thourough tests: |
|
631 |
|
632 \begin{center} |
|
633 \begin{tabular}{@ {\hspace{-20mm}}lcl} |
|
634 \bl{matches (a$\cdot$b)$^*\;$ []} & \bl{$\mapsto$} & \bl{true}\\ |
|
635 \bl{matches (a$\cdot$b)$^*\;$ ab} & \bl{$\mapsto$} & \bl{true}\\ |
|
636 \bl{matches (a$\cdot$b)$^*\;$ aba} & \bl{$\mapsto$} & \bl{false}\\ |
|
637 \bl{matches (a$\cdot$b)$^*\;$ abab} & \bl{$\mapsto$} & \bl{true}\\ |
|
638 \bl{matches (a$\cdot$b)$^*\;$ abaa} & \bl{$\mapsto$} & \bl{false}\medskip\\ |
|
639 \onslide<2->{\bl{matches x$\cdot$(0$|$1)$^*\;$ x} & \bl{$\mapsto$} & \bl{true}}\\ |
|
640 \onslide<2->{\bl{matches x$\cdot$(0$|$1)$^*\;$ x0} & \bl{$\mapsto$} & \bl{true}}\\ |
|
641 \onslide<2->{\bl{matches x$\cdot$(0$|$1)$^*\;$ x3} & \bl{$\mapsto$} & \bl{false}} |
|
642 \end{tabular} |
|
643 \end{center} |
|
644 |
|
645 \onslide<3-> |
|
646 {looks OK \ldots let's ship it to customers\hspace{5mm} |
|
647 \raisebox{-5mm}{\includegraphics[scale=0.05]{sun.png}}} |
|
648 |
|
649 \end{frame}} |
|
650 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
651 *} |
|
652 |
|
653 text_raw {* |
|
654 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
655 \mode<presentation>{ |
|
656 \begin{frame}<1->[c] |
|
657 \frametitle{Version 1} |
|
658 |
|
659 \only<1->{Several hours later\ldots}\pause |
|
660 |
|
661 |
|
662 \begin{center} |
|
663 \begin{tabular}{@ {\hspace{0mm}}lcl} |
|
664 \bl{matches$_1$ []$^*$ s} & \bl{$\mapsto$} & loops\\ |
|
665 \onslide<4->{\bl{matches$_1$ ([] + \ldots)$^*$ s} & \bl{$\mapsto$} & loops\\} |
|
666 \end{tabular} |
|
667 \end{center} |
|
668 |
|
669 \small |
|
670 \onslide<3->{ |
|
671 \begin{center} |
|
672 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} |
|
673 \ldots\\ |
|
674 \bl{match ([]::rs) s} & \bl{$=$} & \bl{match rs s}\\ |
|
675 \ldots\\ |
|
676 \bl{match (r$^*$::rs) s} & \bl{$=$} & \bl{match rs s $\vee$ match (r::r$^*$::rs) s}\\ |
|
677 \end{tabular} |
|
678 \end{center}} |
|
679 |
|
680 |
|
681 \end{frame}} |
|
682 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
683 *} |
|
684 |
|
685 |
|
686 text_raw {* |
|
687 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
688 \mode<presentation>{ |
|
689 \begin{frame}<1->[t] |
|
690 \frametitle{Testing} |
|
691 |
|
692 \begin{itemize} |
|
693 \item While testing is an important part in the process of programming development\pause |
|
694 |
|
695 \item We can only test a {\bf finite} amount of examples.\bigskip\pause |
|
696 |
|
697 \begin{center} |
|
698 \colorbox{cream} |
|
699 {\gr{\begin{minipage}{10cm} |
|
700 ``Testing can only show the presence of errors, never their |
|
701 absence'' (Edsger W.~Dijkstra) |
|
702 \end{minipage}}} |
|
703 \end{center}\bigskip\pause |
|
704 |
|
705 \item In a theorem prover we can establish properties that apply to |
|
706 {\bf all} input and {\bf all} output.\pause |
|
707 |
|
708 \end{itemize} |
|
709 |
|
710 \end{frame}} |
|
711 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
712 *} |
|
713 |
|
714 |
|
715 text_raw {* |
|
716 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
717 \mode<presentation>{ |
|
718 \begin{frame}<1->[t] |
|
719 \frametitle{Version 2} |
|
720 \mbox{}\\[-14mm]\mbox{} |
|
721 |
|
722 \small |
|
723 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}ll@ {}} |
|
724 \bl{nullable ($\varnothing$)} & \bl{$=$} & \bl{false} &\\ |
|
725 \bl{nullable ([])} & \bl{$=$} & \bl{true} &\\ |
|
726 \bl{nullable (c)} & \bl{$=$} & \bl{false} &\\ |
|
727 \bl{nullable (r$_1$ + r$_2$)} & \bl{$=$} & \bl{nullable r$_1$ $\vee$ nullable r$_2$} & \\ |
|
728 \bl{nullable (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{nullable r$_1$ $\wedge$ nullable r$_2$} & \\ |
|
729 \bl{nullable (r$^*$)} & \bl{$=$} & \bl{true} & \\ |
|
730 \end{tabular}\medskip |
|
731 |
|
732 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}} |
|
733 \bl{der c ($\varnothing$)} & \bl{$=$} & \bl{$\varnothing$} & \\ |
|
734 \bl{der c ([])} & \bl{$=$} & \bl{$\varnothing$} & \\ |
|
735 \bl{der c (d)} & \bl{$=$} & \bl{if c = d then [] else $\varnothing$} & \\ |
|
736 \bl{der c (r$_1$ + r$_2$)} & \bl{$=$} & \bl{(der c r$_1$) + (der c r$_2$)} & \\ |
|
737 \bl{der c (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{((der c r$_1$) $\cdot$ r$_2$)} & \\ |
|
738 & & \bl{\;\;+ (if nullable r$_1$ then der c r$_2$ else $\varnothing$)}\\ |
|
739 \bl{der c (r$^*$)} & \bl{$=$} & \bl{(der c r) $\cdot$ r$^*$} &\smallskip\\ |
|
740 |
|
741 \bl{derivative r []} & \bl{$=$} & \bl{r} & \\ |
|
742 \bl{derivative r (c::s)} & \bl{$=$} & \bl{derivative (der c r) s} & \\ |
|
743 \end{tabular}\medskip |
|
744 |
|
745 \bl{matches$_2$ r s $=$ nullable (derivative r s)} |
|
746 |
|
747 \begin{textblock}{6}(9.5,0.9) |
|
748 \begin{flushright} |
|
749 \color{gray}``if r matches []'' |
|
750 \end{flushright} |
|
751 \end{textblock} |
|
752 |
|
753 \begin{textblock}{6}(9.5,6.18) |
|
754 \begin{flushright} |
|
755 \color{gray}``derivative w.r.t.~a char'' |
|
756 \end{flushright} |
|
757 \end{textblock} |
|
758 |
|
759 \begin{textblock}{6}(9.5,12.1) |
|
760 \begin{flushright} |
|
761 \color{gray}``deriv.~w.r.t.~a string'' |
|
762 \end{flushright} |
|
763 \end{textblock} |
|
764 |
|
765 \begin{textblock}{6}(9.5,13.98) |
|
766 \begin{flushright} |
|
767 \color{gray}``main'' |
|
768 \end{flushright} |
|
769 \end{textblock} |
|
770 |
|
771 \end{frame}} |
|
772 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
773 *} |
|
774 |
|
775 text_raw {* |
|
776 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
777 \mode<presentation>{ |
|
778 \begin{frame}<1->[t] |
|
779 \frametitle{Is the Matcher Error-Free?} |
|
780 |
|
781 We expect that |
|
782 |
|
783 \begin{center} |
|
784 \begin{tabular}{lcl} |
|
785 \bl{matches$_2$ r s = true} & \only<1>{\rd{$\Longrightarrow\,\,$}}\only<2>{\rd{$\Longleftarrow\,\,$}}% |
|
786 \only<3->{\rd{$\Longleftrightarrow$}} & \bl{s $\in$ \LL(r)}\\ |
|
787 \bl{matches$_2$ r s = false} & \only<1>{\rd{$\Longrightarrow\,\,$}}\only<2>{\rd{$\Longleftarrow\,\,$}}% |
|
788 \only<3->{\rd{$\Longleftrightarrow$}} & \bl{s $\notin$ \LL(r)}\\ |
|
789 \end{tabular} |
|
790 \end{center} |
|
791 \pause\pause\bigskip |
|
792 By \alert<4->{induction}, we can {\bf prove} these properties.\bigskip |
|
793 |
|
794 \begin{tabular}{lrcl} |
|
795 Lemmas: & \bl{nullable (r)} & \bl{$\Longleftrightarrow$} & \bl{[] $\in$ \LL (r)}\\ |
|
796 & \bl{s $\in$ \LL (der c r)} & \bl{$\Longleftrightarrow$} & \bl{(c::s) $\in$ \LL (r)}\\ |
|
797 \end{tabular} |
|
798 |
|
799 \only<4->{ |
|
800 \begin{textblock}{3}(0.9,4.5) |
|
801 \rd{\huge$\forall$\large{}r s.} |
|
802 \end{textblock}} |
|
803 \end{frame}} |
|
804 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
805 *} |
|
806 |
|
807 text_raw {* |
|
808 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
809 \mode<presentation>{ |
|
810 \begin{frame}<1>[c] |
|
811 \frametitle{ |
|
812 \begin{tabular}{c} |
|
813 \mbox{}\\[23mm] |
|
814 \LARGE Demo |
|
815 \end{tabular}} |
|
816 |
|
817 \end{frame}} |
|
818 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
819 *} |
|
820 |
|
821 |
|
822 text_raw {* |
|
823 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
824 \mode<presentation>{ |
|
825 \begin{frame}<1->[t] |
|
826 |
|
827 \mbox{}\\[-2mm] |
|
828 |
|
829 \small |
|
830 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}ll@ {}} |
|
831 \bl{nullable (NULL)} & \bl{$=$} & \bl{false} &\\ |
|
832 \bl{nullable (EMPTY)} & \bl{$=$} & \bl{true} &\\ |
|
833 \bl{nullable (CHR c)} & \bl{$=$} & \bl{false} &\\ |
|
834 \bl{nullable (ALT r$_1$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) orelse (nullable r$_2$)} & \\ |
|
835 \bl{nullable (SEQ r$_1$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) andalso (nullable r$_2$)} & \\ |
|
836 \bl{nullable (STAR r)} & \bl{$=$} & \bl{true} & \\ |
|
837 \end{tabular}\medskip |
|
838 |
|
839 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}} |
|
840 \bl{der c (NULL)} & \bl{$=$} & \bl{NULL} & \\ |
|
841 \bl{der c (EMPTY)} & \bl{$=$} & \bl{NULL} & \\ |
|
842 \bl{der c (CHR d)} & \bl{$=$} & \bl{if c=d then EMPTY else NULL} & \\ |
|
843 \bl{der c (ALT r$_1$ r$_2$)} & \bl{$=$} & \bl{ALT (der c r$_1$) (der c r$_2$)} & \\ |
|
844 \bl{der c (SEQ r$_1$ r$_2$)} & \bl{$=$} & \bl{ALT (SEQ (der c r$_1$) r$_2$)} & \\ |
|
845 & & \bl{\phantom{ALT} (if nullable r$_1$ then der c r$_2$ else NULL)}\\ |
|
846 \bl{der c (STAR r)} & \bl{$=$} & \bl{SEQ (der c r) (STAR r)} &\smallskip\\ |
|
847 |
|
848 \bl{derivative r []} & \bl{$=$} & \bl{r} & \\ |
|
849 \bl{derivative r (c::s)} & \bl{$=$} & \bl{derivative (der c r) s} & \\ |
|
850 \end{tabular}\medskip |
|
851 |
|
852 \bl{matches r s $=$ nullable (derivative r s)} |
|
853 |
|
854 \only<2>{ |
|
855 \begin{textblock}{8}(1.5,4) |
|
856 \includegraphics[scale=0.3]{approved.png} |
|
857 \end{textblock}} |
|
858 |
|
859 \end{frame}} |
|
860 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
861 *} |
|
862 |
|
863 |
|
864 text_raw {* |
|
865 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
866 \mode<presentation>{ |
|
867 \begin{frame}[c] |
|
868 \frametitle{No Automata?} |
|
869 |
|
870 You might be wondering why I did not use any automata: |
|
871 |
|
872 \begin{itemize} |
|
873 \item A \alert{regular language} is one where there is a DFA that |
|
874 recognises it.\bigskip\pause |
|
875 \end{itemize} |
|
876 |
|
877 |
|
878 There are many reasons why this is a good definition:\medskip |
|
879 \begin{itemize} |
|
880 \item pumping lemma |
|
881 \item closure properties of regular languages\\ (e.g.~closure under complement) |
|
882 \end{itemize} |
|
883 |
|
884 \end{frame}} |
|
885 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
886 |
|
887 *} |
|
888 |
|
889 text_raw {* |
|
890 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
891 \mode<presentation>{ |
|
892 \begin{frame}[t] |
|
893 \frametitle{Really Bad News!} |
|
894 |
|
895 DFAs are bad news for formalisations in theorem provers. They might |
|
896 be represented as: |
|
897 |
|
898 \begin{itemize} |
|
899 \item graphs |
|
900 \item matrices |
|
901 \item partial functions |
|
902 \end{itemize} |
|
903 |
|
904 All constructions are messy to reason about.\bigskip\bigskip |
|
905 \pause |
|
906 |
|
907 \small |
|
908 \only<2>{ |
|
909 Constable et al needed (on and off) 18 months for a 3-person team |
|
910 to formalise automata theory in Nuprl including Myhill-Nerode. There is |
|
911 only very little other formalised work on regular languages I know of |
|
912 in Coq, Isabelle and HOL.} |
|
913 \only<3>{typical textbook reasoning goes like: ``\ldots if \smath{M} and \smath{N} are any two |
|
914 automata with no inaccessible states \ldots'' |
|
915 } |
|
916 |
|
917 \end{frame}} |
|
918 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
919 |
|
920 *} |
|
921 |
|
922 text_raw {* |
|
923 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
924 \mode<presentation>{ |
|
925 \begin{frame}[c] |
|
926 \frametitle{} |
|
927 \large |
|
928 \begin{center} |
|
929 \begin{tabular}{p{9cm}} |
|
930 My point:\bigskip\\ |
|
931 |
|
932 The theory about regular languages can be reformulated |
|
933 to be more suitable for theorem proving. |
|
934 \end{tabular} |
|
935 \end{center} |
|
936 \end{frame}} |
|
937 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
938 *} |
|
939 |
|
940 text_raw {* |
|
941 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
942 \mode<presentation>{ |
|
943 \begin{frame}[c] |
|
944 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
945 |
|
946 \begin{itemize} |
|
947 \item provides necessary and suf\!ficient conditions for a language |
|
948 being regular (pumping lemma only necessary)\medskip |
|
949 |
|
950 \item will help with closure properties of regular languages\bigskip\pause |
|
951 |
|
952 \item key is the equivalence relation:\smallskip |
|
953 \begin{center} |
|
954 \smath{x \approx_{L} y \,\dn\, \forall z.\; x @ z \in L \Leftrightarrow y @ z \in L} |
|
955 \end{center} |
|
956 \end{itemize} |
|
957 |
|
958 \end{frame}} |
|
959 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
960 *} |
|
961 |
|
962 text_raw {* |
|
963 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
964 \mode<presentation>{ |
|
965 \begin{frame}[c] |
|
966 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
967 |
|
968 \mbox{}\\[5cm] |
|
969 |
|
970 \begin{itemize} |
|
971 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_L) \;\Leftrightarrow\; L\; \text{is regular}} |
|
972 \end{itemize} |
|
973 |
|
974 \end{frame}} |
|
975 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
976 |
|
977 *} |
|
978 |
|
979 text_raw {* |
|
980 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
981 \mode<presentation>{ |
|
982 \begin{frame}[c] |
|
983 \frametitle{\LARGE Equivalence Classes} |
|
984 |
|
985 \begin{itemize} |
|
986 \item \smath{L = []} |
|
987 \begin{center} |
|
988 \smath{\Big\{\{[]\},\; U\!N\!IV - \{[]\}\Big\}} |
|
989 \end{center}\bigskip\bigskip |
|
990 |
|
991 \item \smath{L = [c]} |
|
992 \begin{center} |
|
993 \smath{\Big\{\{[]\},\; \{[c]\},\; U\!N\!IV - \{[], [c]\}\Big\}} |
|
994 \end{center}\bigskip\bigskip |
|
995 |
|
996 \item \smath{L = \varnothing} |
|
997 \begin{center} |
|
998 \smath{\Big\{U\!N\!IV\Big\}} |
|
999 \end{center} |
|
1000 |
|
1001 \end{itemize} |
|
1002 |
|
1003 \end{frame}} |
|
1004 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1005 |
|
1006 *} |
|
1007 |
|
1008 text_raw {* |
|
1009 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1010 \mode<presentation>{ |
|
1011 \begin{frame}[c] |
|
1012 \frametitle{\LARGE Regular Languages} |
|
1013 |
|
1014 \begin{itemize} |
|
1015 \item \smath{L} is regular \smath{\dn} if there is an automaton \smath{M} |
|
1016 such that \smath{\mathbb{L}(M) = L}\\[1.5cm] |
|
1017 |
|
1018 \item Myhill-Nerode: |
|
1019 |
|
1020 \begin{center} |
|
1021 \begin{tabular}{l} |
|
1022 finite $\Rightarrow$ regular\\ |
|
1023 \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_L) \Rightarrow \exists r. L = \mathbb{L}(r)}\\[3mm] |
|
1024 regular $\Rightarrow$ finite\\ |
|
1025 \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})} |
|
1026 \end{tabular} |
|
1027 \end{center} |
|
1028 |
|
1029 \end{itemize} |
|
1030 |
|
1031 \end{frame}} |
|
1032 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1033 |
|
1034 *} |
|
1035 |
|
1036 text_raw {* |
|
1037 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1038 \mode<presentation>{ |
|
1039 \begin{frame}[c] |
|
1040 \frametitle{\LARGE Final States} |
|
1041 |
|
1042 \mbox{}\\[3cm] |
|
1043 |
|
1044 \begin{itemize} |
|
1045 \item \smath{\text{final}_L\,X \dn}\\ |
|
1046 \smath{\hspace{6mm}X \in (U\!N\!IV /\!/\approx_L) \;\wedge\; \forall s \in X.\; s \in L} |
|
1047 \smallskip |
|
1048 \item we can prove: \smath{L = \bigcup \{X.\;\text{final}_L\,X\}} |
|
1049 |
|
1050 \end{itemize} |
|
1051 |
|
1052 \end{frame}} |
|
1053 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1054 *} |
|
1055 |
|
1056 text_raw {* |
|
1057 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1058 \mode<presentation>{ |
|
1059 \begin{frame}[c] |
|
1060 \frametitle{\LARGE Transitions between\\[-3mm] Equivalence Classes} |
|
1061 |
|
1062 \smath{L = \{[c]\}} |
|
1063 |
|
1064 \begin{tabular}{@ {\hspace{-7mm}}cc} |
|
1065 \begin{tabular}{c} |
|
1066 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
1067 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
1068 |
|
1069 %\draw[help lines] (0,0) grid (3,2); |
|
1070 |
|
1071 \node[state,initial] (q_0) {$R_1$}; |
|
1072 \node[state,accepting] (q_1) [above right of=q_0] {$R_2$}; |
|
1073 \node[state] (q_2) [below right of=q_0] {$R_3$}; |
|
1074 |
|
1075 \path[->] (q_0) edge node {c} (q_1) |
|
1076 edge node [swap] {$\Sigma-{c}$} (q_2) |
|
1077 (q_2) edge [loop below] node {$\Sigma$} () |
|
1078 (q_1) edge node {$\Sigma$} (q_2); |
|
1079 \end{tikzpicture} |
|
1080 \end{tabular} |
|
1081 & |
|
1082 \begin{tabular}[t]{ll} |
|
1083 \\[-20mm] |
|
1084 \multicolumn{2}{l}{\smath{U\!N\!IV /\!/\approx_L} produces}\\[4mm] |
|
1085 |
|
1086 \smath{R_1}: & \smath{\{[]\}}\\ |
|
1087 \smath{R_2}: & \smath{\{[c]\}}\\ |
|
1088 \smath{R_3}: & \smath{U\!N\!IV - \{[], [c]\}}\\[6mm] |
|
1089 \multicolumn{2}{l}{\onslide<2->{\smath{X \stackrel{c}{\longrightarrow} Y \dn X ;; [c] \subseteq Y}}} |
|
1090 \end{tabular} |
|
1091 |
|
1092 \end{tabular} |
|
1093 |
|
1094 \end{frame}} |
|
1095 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1096 *} |
|
1097 |
|
1098 |
|
1099 text_raw {* |
|
1100 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1101 \mode<presentation>{ |
|
1102 \begin{frame}[c] |
|
1103 \frametitle{\LARGE Systems of Equations} |
|
1104 |
|
1105 Inspired by a method of Brzozowski\;'64, we can build an equational system |
|
1106 characterising the equivalence classes: |
|
1107 |
|
1108 \begin{center} |
|
1109 \begin{tabular}{@ {\hspace{-20mm}}c} |
|
1110 \\[-13mm] |
|
1111 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
1112 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
1113 |
|
1114 %\draw[help lines] (0,0) grid (3,2); |
|
1115 |
|
1116 \node[state,initial] (p_0) {$R_1$}; |
|
1117 \node[state,accepting] (p_1) [right of=q_0] {$R_2$}; |
|
1118 |
|
1119 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
1120 edge [loop above] node {b} () |
|
1121 (p_1) edge [loop above] node {a} () |
|
1122 edge [bend left] node {b} (p_0); |
|
1123 \end{tikzpicture}\\ |
|
1124 \\[-13mm] |
|
1125 \end{tabular} |
|
1126 \end{center} |
|
1127 |
|
1128 \begin{center} |
|
1129 \begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
|
1130 & \smath{R_1} & \smath{\equiv} & \smath{R_1;b + R_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\ |
|
1131 & \smath{R_2} & \smath{\equiv} & \smath{R_1;a + R_2;a}\medskip\\ |
|
1132 \onslide<3->{we can prove} |
|
1133 & \onslide<3->{\smath{R_1}} & \onslide<3->{\smath{=}} |
|
1134 & \onslide<3->{\smath{R_1; \mathbb{L}(b) \,\cup\, R_2;\mathbb{L}(b) \,\cup\, \{[]\};\{[]\}}}\\ |
|
1135 & \onslide<3->{\smath{R_2}} & \onslide<3->{\smath{=}} |
|
1136 & \onslide<3->{\smath{R_1; \mathbb{L}(a) \,\cup\, R_2;\mathbb{L}(a)}}\\ |
|
1137 \end{tabular} |
|
1138 \end{center} |
|
1139 |
|
1140 \end{frame}} |
|
1141 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1142 *} |
|
1143 |
|
1144 |
|
1145 text_raw {* |
|
1146 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1147 \mode<presentation>{ |
|
1148 \begin{frame}<1>[t] |
|
1149 \small |
|
1150 |
|
1151 \begin{center} |
|
1152 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
1153 \onslide<1->{\smath{R_1}} & \onslide<1->{\smath{=}} |
|
1154 & \onslide<1->{\smath{R_1; b + R_2; b + \lambda;[]}}\\ |
|
1155 \onslide<1->{\smath{R_2}} & \onslide<1->{\smath{=}} |
|
1156 & \onslide<1->{\smath{R_1; a + R_2; a}}\\ |
|
1157 |
|
1158 & & & \onslide<2->{by Arden}\\ |
|
1159 |
|
1160 \onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}} |
|
1161 & \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\ |
|
1162 \onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}} |
|
1163 & \only<2>{\smath{R_1; a + R_2; a}}% |
|
1164 \only<3->{\smath{R_1; a\cdot a^\star}}\\ |
|
1165 |
|
1166 & & & \onslide<4->{by Arden}\\ |
|
1167 |
|
1168 \onslide<4->{\smath{R_1}} & \onslide<4->{\smath{=}} |
|
1169 & \onslide<4->{\smath{R_2; b \cdot b^\star+ \lambda;b^\star}}\\ |
|
1170 \onslide<4->{\smath{R_2}} & \onslide<4->{\smath{=}} |
|
1171 & \onslide<4->{\smath{R_1; a\cdot a^\star}}\\ |
|
1172 |
|
1173 & & & \onslide<5->{by substitution}\\ |
|
1174 |
|
1175 \onslide<5->{\smath{R_1}} & \onslide<5->{\smath{=}} |
|
1176 & \onslide<5->{\smath{R_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\ |
|
1177 \onslide<5->{\smath{R_2}} & \onslide<5->{\smath{=}} |
|
1178 & \onslide<5->{\smath{R_1; a\cdot a^\star}}\\ |
|
1179 |
|
1180 & & & \onslide<6->{by Arden}\\ |
|
1181 |
|
1182 \onslide<6->{\smath{R_1}} & \onslide<6->{\smath{=}} |
|
1183 & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
1184 \onslide<6->{\smath{R_2}} & \onslide<6->{\smath{=}} |
|
1185 & \onslide<6->{\smath{R_1; a\cdot a^\star}}\\ |
|
1186 |
|
1187 & & & \onslide<7->{by substitution}\\ |
|
1188 |
|
1189 \onslide<7->{\smath{R_1}} & \onslide<7->{\smath{=}} |
|
1190 & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
1191 \onslide<7->{\smath{R_2}} & \onslide<7->{\smath{=}} |
|
1192 & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star |
|
1193 \cdot a\cdot a^\star}}\\ |
|
1194 \end{tabular} |
|
1195 \end{center} |
|
1196 |
|
1197 \end{frame}} |
|
1198 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1199 *} |
|
1200 |
|
1201 text_raw {* |
|
1202 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1203 \mode<presentation>{ |
|
1204 \begin{frame}[c] |
|
1205 \frametitle{\LARGE A Variant of Arden's Lemma} |
|
1206 |
|
1207 {\bf Arden's Lemma:}\smallskip |
|
1208 |
|
1209 If \smath{[] \not\in A} then |
|
1210 \begin{center} |
|
1211 \smath{X = X; A + \text{something}} |
|
1212 \end{center} |
|
1213 has the (unique) solution |
|
1214 \begin{center} |
|
1215 \smath{X = \text{something} ; A^\star} |
|
1216 \end{center} |
|
1217 |
|
1218 |
|
1219 \end{frame}} |
|
1220 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1221 *} |
|
1222 |
|
1223 |
|
1224 text_raw {* |
|
1225 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1226 \mode<presentation>{ |
|
1227 \begin{frame}<1->[t] |
|
1228 \small |
|
1229 |
|
1230 \begin{center} |
|
1231 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
1232 \onslide<1->{\smath{R_1}} & \onslide<1->{\smath{=}} |
|
1233 & \onslide<1->{\smath{R_1; b + R_2; b + \lambda;[]}}\\ |
|
1234 \onslide<1->{\smath{R_2}} & \onslide<1->{\smath{=}} |
|
1235 & \onslide<1->{\smath{R_1; a + R_2; a}}\\ |
|
1236 |
|
1237 & & & \onslide<2->{by Arden}\\ |
|
1238 |
|
1239 \onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}} |
|
1240 & \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\ |
|
1241 \onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}} |
|
1242 & \only<2>{\smath{R_1; a + R_2; a}}% |
|
1243 \only<3->{\smath{R_1; a\cdot a^\star}}\\ |
|
1244 |
|
1245 & & & \onslide<4->{by Arden}\\ |
|
1246 |
|
1247 \onslide<4->{\smath{R_1}} & \onslide<4->{\smath{=}} |
|
1248 & \onslide<4->{\smath{R_2; b \cdot b^\star+ \lambda;b^\star}}\\ |
|
1249 \onslide<4->{\smath{R_2}} & \onslide<4->{\smath{=}} |
|
1250 & \onslide<4->{\smath{R_1; a\cdot a^\star}}\\ |
|
1251 |
|
1252 & & & \onslide<5->{by substitution}\\ |
|
1253 |
|
1254 \onslide<5->{\smath{R_1}} & \onslide<5->{\smath{=}} |
|
1255 & \onslide<5->{\smath{R_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\ |
|
1256 \onslide<5->{\smath{R_2}} & \onslide<5->{\smath{=}} |
|
1257 & \onslide<5->{\smath{R_1; a\cdot a^\star}}\\ |
|
1258 |
|
1259 & & & \onslide<6->{by Arden}\\ |
|
1260 |
|
1261 \onslide<6->{\smath{R_1}} & \onslide<6->{\smath{=}} |
|
1262 & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
1263 \onslide<6->{\smath{R_2}} & \onslide<6->{\smath{=}} |
|
1264 & \onslide<6->{\smath{R_1; a\cdot a^\star}}\\ |
|
1265 |
|
1266 & & & \onslide<7->{by substitution}\\ |
|
1267 |
|
1268 \onslide<7->{\smath{R_1}} & \onslide<7->{\smath{=}} |
|
1269 & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
1270 \onslide<7->{\smath{R_2}} & \onslide<7->{\smath{=}} |
|
1271 & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star |
|
1272 \cdot a\cdot a^\star}}\\ |
|
1273 \end{tabular} |
|
1274 \end{center} |
|
1275 |
|
1276 \only<8->{ |
|
1277 \begin{textblock}{6}(2.5,4) |
|
1278 \begin{block}{} |
|
1279 \begin{minipage}{8cm}\raggedright |
|
1280 |
|
1281 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm] |
|
1282 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
1283 |
|
1284 %\draw[help lines] (0,0) grid (3,2); |
|
1285 |
|
1286 \node[state,initial] (p_0) {$R_1$}; |
|
1287 \node[state,accepting] (p_1) [right of=q_0] {$R_2$}; |
|
1288 |
|
1289 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
1290 edge [loop above] node {b} () |
|
1291 (p_1) edge [loop above] node {a} () |
|
1292 edge [bend left] node {b} (p_0); |
|
1293 \end{tikzpicture} |
|
1294 |
|
1295 \end{minipage} |
|
1296 \end{block} |
|
1297 \end{textblock}} |
|
1298 |
|
1299 \end{frame}} |
|
1300 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1301 *} |
|
1302 |
|
1303 |
|
1304 text_raw {* |
|
1305 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1306 \mode<presentation>{ |
|
1307 \begin{frame}[c] |
|
1308 \frametitle{\LARGE The Equ's Solving Algorithm} |
|
1309 |
|
1310 \begin{itemize} |
|
1311 \item The algorithm must terminate: Arden makes one equation smaller; |
|
1312 substitution deletes one variable from the right-hand sides.\bigskip |
|
1313 |
|
1314 \item We need to maintain the invariant that Arden is applicable |
|
1315 (if \smath{[] \not\in A} then \ldots):\medskip |
|
1316 |
|
1317 \begin{center}\small |
|
1318 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
1319 \smath{R_1} & \smath{=} & \smath{R_1; b + R_2; b + \lambda;[]}\\ |
|
1320 \smath{R_2} & \smath{=} & \smath{R_1; a + R_2; a}\\ |
|
1321 |
|
1322 & & & by Arden\\ |
|
1323 |
|
1324 \smath{R_1} & \smath{=} & \smath{R_1; b + R_2; b + \lambda;[]}\\ |
|
1325 \smath{R_2} & \smath{=} & \smath{R_1; a\cdot a^\star}\\ |
|
1326 \end{tabular} |
|
1327 \end{center} |
|
1328 |
|
1329 \end{itemize} |
|
1330 |
|
1331 |
|
1332 \end{frame}} |
|
1333 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1334 *} |
|
1335 |
|
1336 |
|
1337 text_raw {* |
|
1338 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1339 \mode<presentation>{ |
|
1340 \begin{frame}[c] |
|
1341 \frametitle{\LARGE Other Direction} |
|
1342 |
|
1343 One has to prove |
|
1344 |
|
1345 \begin{center} |
|
1346 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})} |
|
1347 \end{center} |
|
1348 |
|
1349 by induction on \smath{r}. Not trivial, but after a bit |
|
1350 of thinking, one can prove that if |
|
1351 |
|
1352 \begin{center} |
|
1353 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1)})}\hspace{5mm} |
|
1354 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_2)})} |
|
1355 \end{center} |
|
1356 |
|
1357 then |
|
1358 |
|
1359 \begin{center} |
|
1360 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1) \,\cup\, \mathbb{L}(r_2)})} |
|
1361 \end{center} |
|
1362 |
|
1363 |
|
1364 |
|
1365 \end{frame}} |
|
1366 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1367 *} |
|
1368 |
|
1369 |
|
1370 text_raw {* |
|
1371 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1372 \mode<presentation>{ |
|
1373 \begin{frame}[c] |
|
1374 \frametitle{\LARGE What Have We Achieved?} |
|
1375 |
|
1376 \begin{itemize} |
|
1377 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_L) \;\Leftrightarrow\; L\; \text{is regular}} |
|
1378 \bigskip\pause |
|
1379 \item regular languages are closed under complementation; this is now easy\medskip |
|
1380 \begin{center} |
|
1381 \smath{U\!N\!IV /\!/ \approx_L \;\;=\;\; U\!N\!IV /\!/ \approx_{-L}} |
|
1382 \end{center} |
|
1383 \end{itemize} |
|
1384 |
|
1385 |
|
1386 \end{frame}} |
|
1387 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1388 *} |
|
1389 |
|
1390 text_raw {* |
|
1391 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1392 \mode<presentation>{ |
|
1393 \begin{frame}[c] |
|
1394 \frametitle{\LARGE Examples} |
|
1395 |
|
1396 \begin{itemize} |
|
1397 \item \smath{L \equiv \Sigma^\star 0 \Sigma} is regular |
|
1398 \begin{quote}\small |
|
1399 \begin{tabular}{lcl} |
|
1400 \smath{A_1} & \smath{=} & \smath{\Sigma^\star 00}\\ |
|
1401 \smath{A_2} & \smath{=} & \smath{\Sigma^\star 01}\\ |
|
1402 \smath{A_3} & \smath{=} & \smath{\Sigma^\star 10 \cup \{0\}}\\ |
|
1403 \smath{A_4} & \smath{=} & \smath{\Sigma^\star 11 \cup \{1\} \cup \{[]\}}\\ |
|
1404 \end{tabular} |
|
1405 \end{quote} |
|
1406 |
|
1407 \item \smath{L \equiv \{ 0^n 1^n \,|\, n \ge 0\}} is not regular |
|
1408 \begin{quote}\small |
|
1409 \begin{tabular}{lcl} |
|
1410 \smath{B_0} & \smath{=} & \smath{\{0^n 1^n \,|\, n \ge 0\}}\\ |
|
1411 \smath{B_1} & \smath{=} & \smath{\{0^n 1^{(n-1)} \,|\, n \ge 1\}}\\ |
|
1412 \smath{B_2} & \smath{=} & \smath{\{0^n 1^{(n-2)} \,|\, n \ge 2\}}\\ |
|
1413 \smath{B_3} & \smath{=} & \smath{\{0^n 1^{(n-3)} \,|\, n \ge 3\}}\\ |
|
1414 & \smath{\vdots} &\\ |
|
1415 \end{tabular} |
|
1416 \end{quote} |
|
1417 \end{itemize} |
|
1418 |
|
1419 \end{frame}} |
|
1420 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1421 *} |
|
1422 |
|
1423 |
|
1424 text_raw {* |
|
1425 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1426 \mode<presentation>{ |
|
1427 \begin{frame}[c] |
|
1428 \frametitle{\LARGE What We Have Not Achieved} |
|
1429 |
|
1430 \begin{itemize} |
|
1431 \item regular expressions are not good if you look for a minimal |
|
1432 one for a language (DFAs have this notion)\pause\bigskip |
|
1433 |
|
1434 \item Is there anything to be said about context free languages:\medskip |
|
1435 |
|
1436 \begin{quote} |
|
1437 A context free language is where every string can be recognised by |
|
1438 a pushdown automaton.\bigskip |
|
1439 \end{quote} |
|
1440 \end{itemize} |
|
1441 |
|
1442 \textcolor{gray}{\footnotesize Yes. Derivatives also work for c-f grammars. Ongoing work.} |
|
1443 |
|
1444 \end{frame}} |
|
1445 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1446 *} |
|
1447 |
|
1448 |
|
1449 text_raw {* |
|
1450 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1451 \mode<presentation>{ |
|
1452 \begin{frame}[c] |
|
1453 \frametitle{\LARGE Conclusion} |
|
1454 |
|
1455 \begin{itemize} |
|
1456 \item We formalised the Myhill-Nerode theorem based on |
|
1457 regular expressions only (DFAs are difficult to deal with in a theorem prover).\smallskip |
|
1458 |
|
1459 \item Seems to be a common theme: algorithms need to be reformulated |
|
1460 to better suit formal treatment.\smallskip |
|
1461 |
|
1462 \item The most interesting aspect is that we are able to |
|
1463 implement the matcher directly inside the theorem prover |
|
1464 (ongoing work).\smallskip |
|
1465 |
|
1466 \item Parsing is a vast field which seem to offer new results. |
|
1467 \end{itemize} |
|
1468 |
|
1469 \end{frame}} |
|
1470 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1471 *} |
|
1472 |
|
1473 text_raw {* |
|
1474 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1475 \mode<presentation>{ |
|
1476 \begin{frame}<1>[b] |
|
1477 \frametitle{ |
|
1478 \begin{tabular}{c} |
|
1479 \mbox{}\\[13mm] |
|
1480 \alert{\LARGE Thank you very much!}\\ |
|
1481 \alert{\Large Questions?} |
|
1482 \end{tabular}} |
|
1483 |
|
1484 \begin{center} |
|
1485 \bf \underline{Short Bio:} |
|
1486 \end{center} |
|
1487 \mbox{}\\[-17mm]\mbox{}\small |
|
1488 \begin{itemize} |
|
1489 \item PhD in Cambridge |
|
1490 \item Emmy-Noether Research Fellowship at the TU Munich |
|
1491 \item talks at: CMU, Yale, Princeton, MIT,$\ldots$ |
|
1492 \end{itemize} |
|
1493 |
|
1494 \end{frame}} |
|
1495 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1496 *} |
|
1497 |
|
1498 text_raw {* |
|
1499 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1500 \mode<presentation>{ |
|
1501 \begin{frame}[c] |
|
1502 \frametitle{Future Research} |
|
1503 |
|
1504 My existing strengths:\bigskip |
|
1505 |
|
1506 \begin{itemize} |
|
1507 \item Isabelle (implementation)\bigskip |
|
1508 \item background in logic, programming languages, formal methods |
|
1509 \end{itemize} |
|
1510 |
|
1511 \end{frame}} |
|
1512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1513 *} |
|
1514 |
|
1515 text_raw {* |
|
1516 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1517 \mode<presentation>{ |
|
1518 \begin{frame}[c] |
|
1519 \frametitle{Future Research} |
|
1520 |
|
1521 I want to have a single logic framework in which I can |
|
1522 write programs and prove their correctness.\bigskip |
|
1523 |
|
1524 \begin{itemize} |
|
1525 \item extensions of HOL (IO, modules, advanced types) |
|
1526 \item high-level programming languages |
|
1527 \end{itemize} |
|
1528 |
|
1529 \end{frame}} |
|
1530 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1531 *} |
|
1532 |
|
1533 text_raw {* |
|
1534 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1535 \mode<presentation>{ |
|
1536 \begin{frame}[c] |
|
1537 \frametitle{Future Research} |
|
1538 |
|
1539 Compilers\bigskip |
|
1540 |
|
1541 \begin{itemize} |
|
1542 \item the high-level language needs to be compiled to correct machine |
|
1543 code |
|
1544 \item compiler verification, machine code verification |
|
1545 \end{itemize} |
|
1546 |
|
1547 \end{frame}} |
|
1548 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1549 *} |
|
1550 |
|
1551 text_raw {* |
|
1552 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1553 \mode<presentation>{ |
|
1554 \begin{frame}[c] |
|
1555 \frametitle{Future Research} |
|
1556 |
|
1557 Stronger type-systems\bigskip |
|
1558 |
|
1559 \begin{itemize} |
|
1560 \item ``correct by construction'' |
|
1561 \item GADTs, dependent types |
|
1562 \end{itemize} |
|
1563 |
|
1564 \end{frame}} |
|
1565 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1566 *} |
|
1567 |
|
1568 text_raw {* |
|
1569 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1570 \mode<presentation>{ |
|
1571 \begin{frame}[c] |
|
1572 \frametitle{Future Research} |
|
1573 |
|
1574 Proof automation\bigskip |
|
1575 |
|
1576 \begin{itemize} |
|
1577 \item external tools generate ``proof-certificates'' |
|
1578 \item certificates are imported into Isabelle |
|
1579 \item GPU based external provers |
|
1580 \end{itemize} |
|
1581 |
|
1582 \end{frame}} |
|
1583 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1584 *} |
|
1585 |
|
1586 text_raw {* |
|
1587 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1588 \mode<presentation>{ |
|
1589 \begin{frame}[c] |
|
1590 \frametitle{Future Research} |
|
1591 |
|
1592 Large-scale applications\bigskip |
|
1593 |
|
1594 \begin{itemize} |
|
1595 \item verification of Java-Script, Scala,$\ldots$ |
|
1596 \item interesting code (INTEL in Shanghai) |
|
1597 \end{itemize} |
|
1598 |
|
1599 \end{frame}} |
|
1600 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1601 *} |
|
1602 |
|
1603 |
|
1604 (*<*) |
|
1605 end |
|
1606 (*>*) |
|