Quot/Nominal/Perm.thy
changeset 1252 4b0563bc4b03
parent 1249 ea6a52a4f5bf
child 1253 cff8a67691d2
equal deleted inserted replaced
1251:11b8798dea5d 1252:4b0563bc4b03
     7   fun permute ty = Const (@{const_name permute}, @{typ perm} --> ty --> ty);
     7   fun permute ty = Const (@{const_name permute}, @{typ perm} --> ty --> ty);
     8   val minus_perm = Const (@{const_name minus}, @{typ perm} --> @{typ perm});
     8   val minus_perm = Const (@{const_name minus}, @{typ perm} --> @{typ perm});
     9 *}
     9 *}
    10 
    10 
    11 ML {*
    11 ML {*
       
    12 fun prove_perm_empty lthy induct perm_def perm_frees =
       
    13 let
       
    14   val perm_types = map fastype_of perm_frees;
       
    15   val perm_indnames = Datatype_Prop.make_tnames (map body_type perm_types);
       
    16   val gl =
       
    17     HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
       
    18       (map (fn ((perm, T), x) => HOLogic.mk_eq
       
    19           (perm $ @{term "0 :: perm"} $ Free (x, T),
       
    20            Free (x, T)))
       
    21        (perm_frees ~~
       
    22         map body_type perm_types ~~ perm_indnames)));
       
    23   fun tac _ =
       
    24     EVERY [
       
    25       indtac induct perm_indnames 1,
       
    26       ALLGOALS (asm_full_simp_tac (HOL_ss addsimps (@{thm permute_zero} :: perm_def)))
       
    27     ];
       
    28 in
       
    29   split_conj_thm (Goal.prove lthy perm_indnames [] gl tac)
       
    30 end;
       
    31 *}
    12 
    32 
       
    33 ML {*
       
    34 fun prove_perm_append lthy induct perm_def perm_frees =
       
    35 let
       
    36   val add_perm = @{term "op + :: (perm \<Rightarrow> perm \<Rightarrow> perm)"}
       
    37   val pi1 = Free ("pi1", @{typ perm});
       
    38   val pi2 = Free ("pi2", @{typ perm});
       
    39   val perm_types = map fastype_of perm_frees
       
    40   val perm_indnames = Datatype_Prop.make_tnames (map body_type perm_types);
       
    41   val gl =
       
    42     (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
       
    43       (map (fn ((perm, T), x) =>
       
    44           let
       
    45             val lhs = perm $ (add_perm $ pi1 $ pi2) $ Free (x, T)
       
    46             val rhs = perm $ pi1 $ (perm $ pi2 $ Free (x, T))
       
    47           in HOLogic.mk_eq (lhs, rhs)
       
    48           end)
       
    49         (perm_frees ~~ map body_type perm_types ~~ perm_indnames))))
       
    50   fun tac _ =
       
    51     EVERY [
       
    52       indtac induct perm_indnames 1,
       
    53       ALLGOALS (asm_full_simp_tac (HOL_ss addsimps (@{thm permute_plus} :: perm_def)))
       
    54     ]
       
    55 in
       
    56   split_conj_thm (Goal.prove lthy ("pi1" :: "pi2" :: perm_indnames) [] gl tac)
       
    57 end;
       
    58 *}
       
    59 
       
    60 ML {*
    13 (* TODO: full_name can be obtained from new_type_names with Datatype *)
    61 (* TODO: full_name can be obtained from new_type_names with Datatype *)
    14 fun define_raw_perms new_type_names full_tnames thy =
    62 fun define_raw_perms new_type_names full_tnames thy =
    15 let
    63 let
    16   val {descr, induct, ...} = Datatype.the_info thy (hd full_tnames);
    64   val {descr, induct, ...} = Datatype.the_info thy (hd full_tnames);
    17   (* TODO: [] should be the sorts that we'll take from the specification *)
    65   (* TODO: [] should be the sorts that we'll take from the specification *)
    20   val perm_names' = Datatype_Prop.indexify_names (map (fn (i, _) =>
    68   val perm_names' = Datatype_Prop.indexify_names (map (fn (i, _) =>
    21     "permute_" ^ name_of_typ (nth_dtyp i)) descr);
    69     "permute_" ^ name_of_typ (nth_dtyp i)) descr);
    22   val perm_types = map (fn (i, _) =>
    70   val perm_types = map (fn (i, _) =>
    23     let val T = nth_dtyp i
    71     let val T = nth_dtyp i
    24     in @{typ perm} --> T --> T end) descr;
    72     in @{typ perm} --> T --> T end) descr;
    25   val perm_indnames = Datatype_Prop.make_tnames (map body_type perm_types);
       
    26   val perm_names_types' = perm_names' ~~ perm_types;
    73   val perm_names_types' = perm_names' ~~ perm_types;
    27   val pi = Free ("pi", @{typ perm});
    74   val pi = Free ("pi", @{typ perm});
    28   fun perm_eq_constr i (cname, dts) =
    75   fun perm_eq_constr i (cname, dts) =
    29     let
    76     let
    30       val Ts = map (typ_of_dtyp descr sorts) dts;
    77       val Ts = map (typ_of_dtyp descr sorts) dts;
    58     val ((_, perm_ldef), lthy') =
   105     val ((_, perm_ldef), lthy') =
    59       Primrec.add_primrec
   106       Primrec.add_primrec
    60         (map (fn s => (Binding.name s, NONE, NoSyn)) perm_names') perm_eqs lthy;
   107         (map (fn s => (Binding.name s, NONE, NoSyn)) perm_names') perm_eqs lthy;
    61     val perm_frees =
   108     val perm_frees =
    62       (distinct (op =)) (map (fst o strip_comb o fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) perm_ldef);
   109       (distinct (op =)) (map (fst o strip_comb o fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) perm_ldef);
    63     val perm_empty_thms =
   110     val perm_empty_thms = List.take (prove_perm_empty lthy' induct perm_ldef perm_frees, length new_type_names);
    64       let
   111     val perm_append_thms = List.take (prove_perm_append lthy' induct perm_ldef perm_frees, length new_type_names)
    65         val gl =
   112     val perms_name = space_implode "_" perm_names'
    66           HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
   113     val perms_zero_bind = Binding.name (perms_name ^ "_zero")
    67             (map (fn ((perm, T), x) => HOLogic.mk_eq
   114     val perms_append_bind = Binding.name (perms_name ^ "_append")
    68                 (perm $ @{term "0 :: perm"} $ Free (x, T),
   115     fun tac _ perm_thms =
    69                  Free (x, T)))
       
    70              (perm_frees ~~
       
    71               map body_type perm_types ~~ perm_indnames)));
       
    72         fun tac {context = ctxt, ...} =
       
    73           EVERY [
       
    74             indtac induct perm_indnames 1,
       
    75             ALLGOALS (asm_full_simp_tac (@{simpset} addsimps perm_ldef))
       
    76           ];
       
    77       in
       
    78         (List.take (split_conj_thm (Goal.prove lthy' perm_indnames [] gl tac), length new_type_names))
       
    79       end;
       
    80     val add_perm = @{term "op + :: (perm \<Rightarrow> perm \<Rightarrow> perm)"}
       
    81     val pi1 = Free ("pi1", @{typ perm});
       
    82     val pi2 = Free ("pi2", @{typ perm});
       
    83     val perm_append_thms =
       
    84        List.take ((split_conj_thm
       
    85          (Goal.prove lthy' ("pi1" :: "pi2" :: perm_indnames) []
       
    86             (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
       
    87                (map (fn ((perm, T), x) =>
       
    88                    let
       
    89                      val lhs = perm $ (add_perm $ pi1 $ pi2) $ Free (x, T)
       
    90                      val rhs = perm $ pi1 $ (perm $ pi2 $ Free (x, T))
       
    91                    in HOLogic.mk_eq (lhs, rhs)
       
    92                    end)
       
    93                  (perm_frees ~~
       
    94                   map body_type perm_types ~~ perm_indnames))))
       
    95             (fn _ => EVERY [indtac induct perm_indnames 1,
       
    96                ALLGOALS (asm_full_simp_tac (@{simpset} addsimps perm_ldef))]))),
       
    97           length new_type_names);
       
    98     fun tac ctxt perm_thms =
       
    99       (Class.intro_classes_tac []) THEN (ALLGOALS (
   116       (Class.intro_classes_tac []) THEN (ALLGOALS (
   100         simp_tac (@{simpset} addsimps perm_thms
   117         simp_tac (HOL_ss addsimps perm_thms
   101       )));
   118       )));
   102     fun morphism phi = map (Morphism.thm phi);
   119     fun morphism phi = map (Morphism.thm phi);
   103   in
   120   in
   104     Class_Target.prove_instantiation_exit_result morphism tac (perm_empty_thms @ perm_append_thms) lthy'
   121   lthy'
       
   122   |> snd o (Local_Theory.note ((perms_zero_bind, []), perm_empty_thms))
       
   123   |> snd o (Local_Theory.note ((perms_append_bind, []), perm_append_thms))
       
   124   |> Class_Target.prove_instantiation_exit_result morphism tac (perm_empty_thms @ perm_append_thms)
   105   end
   125   end
   106 
   126 
   107 *}
   127 *}
   108 
   128 
   109 (* Test
   129 (* Test