Nominal/LFex.thy
changeset 1553 4355eb3b7161
parent 1547 57f7af5d7564
child 1561 c3dca6e600c8
equal deleted inserted replaced
1549:74888979e9cd 1553:4355eb3b7161
    20     Const "ident"
    20     Const "ident"
    21   | Var "name"
    21   | Var "name"
    22   | App "trm" "trm"
    22   | App "trm" "trm"
    23   | Lam "ty" n::"name" t::"trm" bind n in t
    23   | Lam "ty" n::"name" t::"trm" bind n in t
    24 
    24 
    25 lemma ex_out: 
    25 thm kind_ty_trm.supp
    26   "(\<exists>x. Z x \<and> Q) = (Q \<and> (\<exists>x. Z x))"
       
    27   "(\<exists>x. Q \<and> Z x) = (Q \<and> (\<exists>x. Z x))"
       
    28   "(\<exists>x. P x \<and> Q \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
       
    29   "(\<exists>x. Q \<and> P x \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
       
    30 apply (blast)+
       
    31 done
       
    32 
       
    33 lemma Collect_neg_conj: "{x. \<not>(P x \<and> Q x)} = {x. \<not>(P x)} \<union> {x. \<not>(Q x)}"
       
    34 by (simp add: Collect_imp_eq Collect_neg_eq[symmetric])
       
    35 
       
    36 lemma supp_eqs:
       
    37   "supp Type = {}"
       
    38   "supp kind = fv_kind kind \<Longrightarrow> supp (KPi ty name kind) = supp ty \<union> supp (Abs {atom name} kind)"
       
    39   "supp (TConst i) = {atom i}"
       
    40   "supp (TApp A M) = supp A \<union> supp M"
       
    41   "supp ty2 = fv_ty ty2 \<Longrightarrow> supp (TPi ty1 name ty2) = supp ty1 \<union> supp (Abs {atom name} ty2)"
       
    42   "supp (Const i) = {atom i}"
       
    43   "supp (Var x) = {atom x}"
       
    44   "supp (App M N) = supp M \<union> supp N"
       
    45   "supp trm = fv_trm trm \<Longrightarrow> supp (Lam ty name trm) = supp ty \<union> supp (Abs {atom name} trm)"
       
    46   apply(simp_all (no_asm) add: supp_def permute_set_eq atom_eqvt)
       
    47   apply(simp_all only: kind_ty_trm.eq_iff Abs_eq_iff alpha_gen)
       
    48   apply(simp_all only: ex_out)
       
    49   apply(simp_all only: eqvts[symmetric])
       
    50   apply(simp_all only: Collect_neg_conj)
       
    51   apply(simp_all only: supp_at_base[simplified supp_def] Un_commute Un_assoc)
       
    52   apply(simp_all add: Collect_imp_eq Collect_neg_eq[symmetric] Un_commute Un_assoc)
       
    53   apply(simp_all add: Un_left_commute)
       
    54   done
       
    55 
       
    56 lemma supp_fv:
       
    57   "supp t1 = fv_kind t1 \<and> supp t2 = fv_ty t2 \<and> supp t3 = fv_trm t3"
       
    58   apply(induct rule: kind_ty_trm.induct)
       
    59   apply(simp_all (no_asm) only: supp_eqs)
       
    60   apply(simp_all)
       
    61   apply(simp_all add: supp_eqs)
       
    62   apply(simp_all add: supp_Abs)
       
    63   done
       
    64 
       
    65 lemma supp_kind_ty_trm:
       
    66   "supp Type = {}"
       
    67   "supp (KPi A x K) = supp A \<union> (supp K - {atom x})"
       
    68   "supp (TConst i) = {atom i}"
       
    69   "supp (TApp A M) = supp A \<union> supp M"
       
    70   "supp (TPi A x B) = supp A \<union> (supp B - {atom x})"
       
    71   "supp (Const i) = {atom i}"
       
    72   "supp (Var x) = {atom x}"
       
    73   "supp (App M N) = supp M \<union> supp N"
       
    74   "supp (Lam A x M) = supp A \<union> (supp M - {atom x})"
       
    75 apply (simp_all add: supp_fv)
       
    76 
    26 
    77 end
    27 end
    78 
    28 
    79 
    29 
    80 
    30